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Summary

This report describes the results obtained in the course of the entire project, which was

initially funded through a NASA AISRP grant NAS5-31348, and through USRA contract

# 5555-32.

In the early phases of the project, we developed a user-friendly package for multi-

variate statistical analysis of small and moderate-size data sets, called STATPROG. The

package was tested extensively on a number of real scientific applications, and has produced

real, published results.

Subsequently, the bulk of the effort was in the development and testing of a major

package used to process and analyse the data from the digital version of the Second Palomar

Sky Survey (some 3 Terabytes of raw pixel information). This system, called SKICAT,

incorporates the latest in machine learning and expert systems software technology, in order

to classify the detected objects objectively and uniformly, and facilitate handling of the

enormous data sets from digital sky surveys, and other sources. The system was developed

as a major collaborative effort between our group, and the JPL Artificial Intelligence group.

The SKICAT system provides a powerful, integrated environment for the manipula-

tion and scientific investigation of catalogs from virtually any source. The system serves

three principal functions: image catalog construction, catalog management, and catalog

analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT

automates the process of classifying objects within CCD and digitized plate images. To

exploit these catalogs, the system also provides tools to merge them into a large, complex

database which may be easily queried and modified when new data, or better methods of

calibrating or classifying the old, become available. The most innovative feature of SKI-

CAT is the facility it provides to experiment with and apply the latest in machine learning

technology to the tasks of catalog construction and analysis. The very same classification

learning software used to create the classifiers in SKICAT's automated image cataloging

tools are available for use on any SKICAT data set, or even data from external sources.

SKICAT provides a unique environment for implementing these tools for any number of

future scientific purposes.

Initial scientific verification and performance tests have been made using galaxy

counts and measurements of galaxy clustering from small subsets of the survey data, and

a search for very high redshift quasars. These tests helped uncover and fix several mi-

nor problems, and excercized the software in a real-life situation. All of the tests were

successful, and produced new and interesting scientific results.

Attachments to this report give detailed accounts of the technical aspects of the

SKICAT system, and of some of the scientific results achieved to date.
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1. Introduction. The goals of the project

This report describes the technical and scientific results obtained in the course of the

project which was initially funded through a NASA AISRP program grant, and then, in

the last year of the total period of performance, through an USRA contract. Since there

was no distinct boundary within the total period of performance, this report covers the

entire project, and not just the work done under the USRA contract.

A substantial portion of the work was done as a collaborative effort between our group

at Caltech, funded through this program and other sources, and the Artificial Intelligence

group at the JPL (funded separately). While the Caltech contributions were substantial,

our funding alone could not have accomplished the work and the results described here.

Further cost sharing was through the P.I.'s NSF Presidential Young Investigator award,

which covered many of the scientific verification tests and applications, and from Palomar

Observatory, which paid one half of the salary of the postdoctoral fellow (Dr. de Carvalho)

who worked on this project for the past year or so.

The motivation and the goals behind our work were to confront the problem of ex-

tracting interesting scientific results from vast amounts of data, with a minimum of loss

and waste, in our fields of interest, viz., astronomy and space science. Raw data, no mat-

ter how expensively obtained, are no good without an effective ability to process them

quickly and thoroughly, and to refine the essence of scientific knowledge from them. We

approached the problem with a belief that many of the advanced tools needed for this task

already exist in the various fields of computer science and statistics. Our practical goal

was to bridge the gap between the disciplines, and introduce the modern data management

and analysis software technologies into astronomy and astrophysics.

Our philosophy throughout has been to seek existing, applicable software and algo-

rithms from the public domain wherever possible, and minimize independent programming

effort (except for the interfaces, etc.). We did not want to reinvent any wheels, but to iden-

tify the most promising tools from the vast amount of scattered software, available in the

open scientific literature or commercially, and to assemble some particularly useful pieces

into working scientific packages. We verified their effectiveness and improved their design

by attacking some real-life scientific problems. In the end, we provided packaged tools

for working astronomers, who have to deal with large amounts of data, and extract a
maximum science from it.

Our work proceeded in two stages: First, we developed a simple, but very effective

and scientifically productive multivariate statistical analysis package (STATPROG). We

utilized as much as possible existing or published routines and algorithms, with some

programming and development of our own, and after an extensive comparisons, testing,

and evaluation, put together a user-friendly, science-ready package. The package was

scientifically validated through some real advances and discoveries, published in major

astronomy journals, as documented in a number of references listed in the Bibliography.

The work on STATPROG was done entirely during the NASA/AISRP funding stage of

this project, before the USRA contract.



We then embarkedon a larger and moreambitious effort, which constituted the bulk
of our work, and which was the subject of N. Weir's Ph.D. thesis at Caltech. We were
very fortunate in this endeavorto start an extremely productive and mutually beneficial
collaboration with the JPL AI group, and in particular Drs. R. Doyle and U. Fayyad.

Our initial motivation there was to facilitate the scientific exploitation of the digital

scans of the nearly 3000 photographic plates comprising the Second Palomar Observatory

Sky Survey (POSS-II). The scans will ultimately add up to about 3 Terabytes of pixel data,

an unprecedented amount of image information in the optical/IR astronomy. These scans

will be the highest quality set of images covering the entire northern sky produced to date,

and will almost certainly not be surpassed for at least a decade. Their potential scientific

value is enormous, if only the relevant information can be extracted quickly and efficiently.

We estimate that ultimately > 5 x 107 galaxies and >_ 2 x 109 stars should be detected

on the POSS-II plates, reaching down to the 22nd B magnitude. As an illustration, this

exceeds the entire IRAS survey by three orders of magnitude in the number of objects

alone, and with much more information per object!

To provide for the construction, classification, and analysis of object catalogs from

this three Terabyte imagery data set, we developed a software system we call the Sky Image

Cataloging and Analysis Tool (SKICAT). The system incorporates the latest techniques

from the fields of machine learning and artificial intelligence, and is probably one of the

first major applications of such modern software technology to astronomy. The system

consists of roughly three layers of information processing and analysis. The first one,

which generates catalogs of automatically classified objects from the raw plate scans and

CCD calibration images, and the second one, where image catalogs are matched and

manipulated, have been covered in this project. The third layer, in which a powerful

toolbox of modern data analysis algorithms is to be applied for scientific exploitation of

the catalogs was only started, and the work was temporarily suspended by the termination

of our funding. We are now pursuing alternative funding sources to continue this work.

SKICAT is a collection of new and borrowed, commercial and public domain, software

products which have been integrated for a common purpose. The current version of SKI-

CAT uses the Sybase commercial database package for catalog storage and management.

The system is thereby designed to manage a data base constantly growing and improv-

ing with time. With consistent command line and X-windows interfaces, the programs

collectively meet the following three demands of standard astronomical surveys: catalog

construction, management, and analysis. We have already demonstrated SKICAT's suc-

cessful application to the digitized POSS-II. The system is already beginning to produce

real science, and we believe that it will become scientifically useful to the astronomical

community at large. Within it, data from a variety of different wavelengths could be

retrieved and cross-analyzed within the same powerful environment.

The lead part of this report gives a synthetic summary of the principal achievements.

Technical details and specific results are described extensively in the Attachments, which

represent papers submitted to refereed journals (two of tlaem have been already practically

accepted for publication, as of this writing). The Attachments thus constitute the real
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technical description of the resultsof this work. Additional results and interim reports can
be found in the papers listed in the Bibliography.

2. The STATPROG package for multivariate data analysis

The STATPROG package consists of a number of standalone programs, originally de-

veloped under the VMS operating system. The software is written entirely in the standard

Fortran 77, and has been ported to Unix Sparcstation platforms. We have systematically

explored the available software resources, combined them in a homogeneous system, and

tested them on real-life astronomical research problems. We have sampled some software

from widely a_-ailable, pubLic-domain sources: the Numerical Recipes library and its com-

panion volume (Press et aL), the monograph Multivariate Data Analysis by Murtagh and

Heck, the Gaussfi_ package, available from Dr. Jeffries at the Astronomy Department,

University of Texas at Austin, the MDRACE package, available from the Statistics De-

partment, University of California at Berkeley, and several routines published in various

astronomical journal papers. We also did some of our own coding of simple statistical

diagnostics and fitting routines. The sources of the codes and their evaluation will be

prepared in the later stages of this project.

The prototype package assembles a number of algorithms and routines, providing sim-

ple statistics, data handling, covariance analysis, Principal Component Analysis (PCA),

bivariate optimization, and several versions of least squares fitting routines has been de-

veloped, running under the VMS operating system. The data input is through simple,

standard ASCII files, combining any number of the leading header records, followed by

data records (one per data vector) listed in a free-format column-by-column format. The

package is very easy to use.

We performed the initial tests of the package on synthetic data, and then tackled

some real astrophysical problems: systematics of properties of elliptical galaxies and their

globular cluster systems. This excercise was both scientifically successful (with several

papers published or in press in major journals so far, plus a large number of conference

papers; see the Bibliography), and it also provided the valuable feedback, leading to a

number of small design modifications and improvements. Such tests "under the fire" are

the only way of providing a scientifically credible and useful software package.

The initial version of the package has been exported to several sites, both within

the U.S., and abroad (Europe, and Brazil), for an independent evaluation by other as-

tronomers. Their reactions were both useful and positive. We believe that STATPROG

will become a valuable tool for the astronomical and space science research community.

3. The SKICAT system: Background and motivation

The initial motivation for the Sky Image Cataloging and Analysis Tool (SKICAT) was

to facilitate the scientific exploitation of the Palomar - STScI Digitized Sky Survey, based

on the scans of the nearly 3000 J, F, and N photographic plates comprising the Secont _

Palomar Observatory Sky Survey (POSS-II). The scans will ultimately add up to about [

terabytes of pixel data. These scans will be the highest quality set of images covering th



entire northern sky produced to date, and will almost certainly not be surpassedfor at
least a decade.Their potential scientific value is enormous,if only the relevant information
can be extracted quickly and efficiently. We estimate that ultimately > 5 x 107galaxies
and > 5 x l0s stars should be detected on the POSS-II plates, reaching down to the 22nd
B magnitude.

To provide for the construction, classification, and analysis of object catalogs from

this three Terabyte imagery data set, the JPL Artificial Intelligence Group and Caltech As-

tronomy developed a software system we call SKICAT. The system incorporates the latest

techniques from the fields of machine learning and artificial intelligence, and is probably

one of the first major applications of such modern software technology to astronomy.

The system is described in some detail in the Attachment A to this report. Only a

brief description will be given here. The SKICAT system is envisioned to consist of three

layers of information processing and analysis. The first one, which generates catalogs of

automatically classified objects from the raw plate scans and CCD calibration images is

now complete. The second one, where image catalogs are matched and manipulated is

now practically complete, with further refinements and capabilities being added to it on

a continuous basis. The third layer, in which a powerful toolbox of modern data analysis

algorithms is to be applied for scientific exploitation of the catalogs, was only partly

completed, due to the termination of our funding. We are now in the process of seeking

resources to complete this stage, and will do so as the future funding allows.

Put briefly, SKICAT is a collection of new and borrowed, commercial and public do-

main, software products which have been integrated for a common purpose. With consis-

tent command line and X-windows interfaces, the programs collectively meet the following

three demands of standard astronomical surveys: catalog construction, management, and

analysis.

We first wrote and integrated the tools necessary for constructing object catalogs from

the plate and CCD sequence images. Next, we applied state-of-the-art machine learning

technology to develop an object classification method which is accurate at levels a full

magnitude fainter than in previous automated Schmidt-based photographic sky surveys.

As a result, we obtained more than twice the density of classified galaxies in our catalogs

relative to previous ones. We next developed the machinery for matching multiple plate

and CCD catalogs into a single "matched catalog", as well as a mechanism for performing

sophisticated queries thereof.

No existing software, such as FOCAS or DAOPHOT (two commonly used astronom-

ical software packages), was able to meet the complex demands of cataloging the Gigabyte

images comprising a single plate scan, much less manage and match the few thousand plate

catalogs that will comprise the whole POSS-II. Given that we had to design these man-

agement tools from scratch, we chose to generalize SKIC_,T to eventually accommodate

astronomical catalogs from sources other than plates or CCDs (e.g., IRA$ or ROSAT)

with a modest amount of programming effort. Thereby data from a variety of different

wavelengths could be retrieved and cross-analyzed within the same powerful environment.

The current version of SKICAT uses the Sybase commercial database package for

catalog storage and management. To use a catalog within SKICAT, it must be registered



in the SKICAT system tables, where a completedescription and history of every catalog
loaded to date is maintained. Catalog revisions, that might result from deriving new and
improved plate astrometric solutions or photometric corrections, are also logged. The
systemis thereby designedto managea data baseconstantly growing and improving with
time.

To maintain a reliable inventory, catalogsmust be read from and written to external
storageusing a SKICAT interface. Catalogsmay be matched,object by object, with other
catalogs to form a matched catalog. This catalog contains independent entries for every

measurement of every object detected in the constituent catalogs. The matched catalog

may be queried using a sophisticated filtering and output mechanism to generate a so-

called object catalog, containing just a single entry per matched object. For example, a

user may requests all objects from a large sky region covered by multiple plates of the

same or different passbands, specifying exactly which object attributes to report and from

which source. Such queries may generate either additional Sybase objects tables or ASCII

files, thus maintaining a considerable flexibility for different applications.

One of the most novel aspects of SKICAT is the facility to query overlap regions in the

matched catalog and to dynamically update the constituent catalogs (their photometry,

astrometry, classifications, etc.) in light of these results. The query tool may in turn be

used to create a static, distributable data product from the current set of matched plate

catalogs. However, the essential feature of SKICAT is that it maintains a "living," growing

data set, instead of a data archive fixed for all time.

The third major component of SKICAT as envisioned, is a set of programs for sur-

vey data exploration and analysis. This includes the STATPROG library of multivariate

statistical analysis routines we have developed earlier as part of this project, and much

more. For example, we started to incorporate the neural networks and the GID3*/OBtree

decision tree induction software used to produce the plate object classifier implemented

in the AutoPlate script of SKICAT. We also started the work introducing unsupervised

Bayesian classification algorithms, such as AUTOCLASS, for a more sophisticated and

model-independent exploration of large data spaces. These programs might later be used

to train and produce classifiers for scientific uses of the digitized POSS-II, or any other

catalogs, that we had never anticipated.

4. The star-galaxy classification problem

A key technical and scientific problem in this kind of work is the objective star-galaxy

classification. The accuracy and reliability of object classifications really determines the

scientifically useful depth of a sky survey, regardless of the flux detection limits achieved.

A paper describing our results and the work on the star-galaxy classification problem is

given in the Attachment B to this report, and it gives all the details.

Briefly, in our early work on this problem, we experimented with the template-fitting

approach as used in the FOCAS package, and Neural Net (NN) classifiers. We have applied

this software to the star-selection classification problem with great success, achieving a bet-

ter than 95% success rate on test data using a set of nine input attributes after training on
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only a few hundred objects. We developed code which implements a multi-layer percep-

tron artificial NN model for non-linear regression and classification. The software provides

for an arbitrary number of layers and nodes at the input, output, and hidden level, as

well as a broad choice of linear and non-linear activation functions. A variety of optimiza-

tion methods are available, including gradient descent-based standard back-propagation

and highly efficient conjugate gradient and variable metric methods. The latter reduce

network training time by more than an order of magnitude over the traditional method.

We also did some research into the possibility of incorporating formal error estimates in

the form of a covariance matrix associated with the network outputs for any given input,

which is a novelty in the field of Neural Nets.

We then tried a different approach to the problem of automatic objective classifica-

tion, using Decision Tree algorithms (ID3, GID3*). We applied the GID3* decision tree

algorithm developed by Fayyad and a neural network to the task of selecting a set of stars

from a relatively bright sample of objects. These are subsequently used to generate the

point spread function, which is used in a template matching procedure for constructing

more accurate classification attributes. Our tests indicated that both approaches worked

comparably well, achieving > 95% success rates. We, therefore, chose to stick with the

GID3* method, as it produces a readily comprehensible set of classification rules, unlike

the neural network. Our tests on the actual PDS data indicated that we can perform

star selection with < 1% error rate. When the final set of attributes produced by tem-

plate matching are included, we are able to perform star/galaxy/artifact classification with

> 95% accuracy down to _ 20 m in the Bj band, and > 90% accuracy down to Bj - 21 m.

Thus, Decision Tree algorithms have been used as the principal object classification tools

within SKICAT. More details are given in the Attachment B.

Finally, we started explorations of unsupervised learning algorithms such as AUTO-

CLASS, to the analysis of object catalogs derived from the digitized POSS-II. Our goal

was to explore the of the power of unsupervised learning techniques to classify objects

meaningfully and perhaps to discover previously unrecognized object categories in digital

sky surveys. Our primary finding is that AUTOCLASS was able to form several sensi-

ble categories from a few simple attributes of the object images, separating the data into

four recognizable and astronomically meaningful classes: stars, galaxies with bright central

cores, galaxies without bright cores, and stars with a visible "fuzz" around them. In an

independent experiment we found out that the two types of galaxies have distinct color

distributions (the more concentrated class being redder, as indeed expected if they are

predominantly early Hubble types), although no color information was given to the pro-

gram! This illustrates the power of unsupervised classification techniques to discriminate

between astronomically distinct types of objects on the basis of data alone. We believe

that the application of such algorithms to large-scale astronomical sky surveys can aid in

cataloguing the detected objects, and may even have the potential to discover new cate-

gories of objects. Thus, we believe that this remains a very interesting and promising area
for the future work.
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5. The SKICAT system: Description and current status

The single-plate reduction is accomplished by a parent unix script which calls sub-

ordinate routines for reading in and processing the plate image. The plate is broken into

a set of 13 by 13 overlapping footprint images, which are analysed separately, and then

combined in the master plate catalog (the full plate scans are over 23,000 by 23,000 pixels,

or about 1 Gigabyte, which is too large to handle efl:iciently).

One of the most novel aspects of SKICAT is the facility to query overlap regions in the

matched catalog and to dynamically update the constituent catalogs (their photometry,

astrometry, classifications, etc.) in light of these results. The query tool may in turn be

used to create a static, distributable data product from the current set of matched plate

catalogs. However, the essential feature of SKICAT is that it maintains a "living," growing

data set, instead of a data archive fixed for all time. This is one of the real novelties in

our work, never before attempted in the astronomical data processing at large, especially

in sky surveys.

We started exploring the unsupervised clustering and objective automatic classifica-

tion techniques. For example, we investigated AUTOCLASS unsupervised classification

software developed at NASA Ames, and explored other Bayesian inference and cluster anal-

ysis tools. These software tools may be capable of independent or cooperative discoveries,

and their application may greatly enhance the productivity of practicing scientists.

Effectively, by crossing the wavelength boundaries and creating a synergy of space-

based and ground-based data from surveys covering large fractions of the entire sky, we are

approaching a new level of complexity in astronomical source catalogs. Furthermore, the

catalogs we generate will be constantly changing, growing in size and scope, and improving

in time, as new and better data come in. This is an entirely new concept of an astronomical

data catalog: a downloadable, growing data base with which one interacts using semi-

intelligent software robots (knowbots); no more dusty, immutable printed volumes! The

tools we developed are generic to this concept of hypercatalogs. There is a fusion of the

data and the information tools, and it is that new ground, at least within astronomy.

6. The initial scientific verification tests

While the principal thrust of this work was technical and software technology ori-

ented, the validity of the data products and the software systems which generate them,

as well as the power of the sophisticated data analysis tools (such as many functions

of SKICAT) can be really verified only through an application to a real scientific prob-

lem. This testing on the fire line is an indispensable part of the system shakedown. We

thus attacked, in a limited way, several important scientific problems using some of the

preliminary catalogs generated by SKICAT. These are only initial, but still scientifically

substantial experiments; they pave the way for the future pipeline processing and scientific

exploration of digitized POSS-II, which should be funded separately elsewhere. Here we

used them as test cases to excercize the system. Indeed, they helped us uncover and fix

numerous "features" in the system.
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Onebasic test of our galaxy photometry, parameter definition and measurementpro-
cedures,and star-galaxy classification,are galaxy counts asa function of magnitude. This
is oneof the traditional tests of cosmology(pioneeredby Hubble), and it providesus with
a sensitive test of internal consistencyand accuracy. A detailed paper dealing with these
tests is presented in the Attachment C to this report. Briefly, we have demonstrated an
unprecedentedlevel of accuracy and internal consistencyrelative to all previous studies
usinga comparablesky surveymaterial. Sincethe raw data quality has not changedfrom
the previous studies,our improvementsareclearly due to the superior software technology
now implemented within the SKICAT system.

A related test are studies of the large-scalestructure using two-point correlation
functions for the galaxies. The preliminary results here are equally encouraging. We
presentedthem as a conferencepaper, and wewill turn them into a journal paper shortly.

Another project which provides a stringent test of our star-galaxy classification and
catalog matching procedures is the search for high-redshift (z > 4) quasars, using peculiar

colors. The trick here is to select on the average one z > 4 quasar per approximately 10 5

foreground stellar images. The first results of this work are starting to come in, and the

first luminous z > 4 quasar selected using this AI-based software technology from the sky

survey scans has just been discovered at Palomar about two weeks ago! It is the first one

of many more to come. This work is a part of Julia Smith's Ph.D. thesis at Caltech.

The accuracy of our star-galaxy classifications is also being tested through spec-

troscopy, a completely independent technique. This has been done by ourselves during

our quasar search (virtually all objects classified as being stellar indeed turned out to be

stellar), and by our colleagues who are conducting a massive redshift survey at Palomar:

they find that the accuracy of our star-galaxy classifications is at least a factor of five

higher than in the previous surveys using a comparable plate material. This work has

been funded separately by the NSF, but it provides a valuable verification of our efforts.

Finally, we have started an exploration of the huge data bases resulting from the sky

survey to discover and define objective catalogs of groups and clusters of galaxies. This

work is also being funded separately, and it will provide valuable feedback to further refine

and enhance our algorithms in the third layer of SKICAT.

We thus conclude that our software and algorithms have passed the initial scientific

verification tests with flying colors. They are now starting to produce real science, and are

being used by several independent groups for different projects.

7. Prospects for the future work

On the scale of a couple of years from now, the storage technologies may be good

enough to revisit the cataloguing and classification problem in a whole new light: iterative

or feedback catalog generation. The current practice (including SKICAT) is to measure

the images once in a predetermined way, and derive the object parameters and classi-

fications from these measurements (e.g., moments of the light distribution, etc.). Once

measured, pixels are not revisited, since the image data volume is too bulky to keep on

line. If history is any guide, this technical limitation may change very quickly. It would
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then be possible to have intelligent object-finding and classifier algorithms automatically
redefinethe measurement process, i.e., go back to the pixels and measure some new object

parameters if deemed necessary. This may be naturally accomplished using the so-called

genetic algorithms, which are capable of evolving and self-improvement. We are not aware

of any application of such tools in astronomy so far, yet this has a natural appeal. It would

represent a truly novel approach to astronomical catalog generation.

The basic mode of our work has been to search for existing tools and software tech-

nologies on the cutting edge of applied statistics, machine intelligence and related fields,

and apply them to specific and very pressing problems of astronomical data analysis. In

this, we have already developed a successful set of tools, first STATPROG, and then, in col-

laboration with the JPL AI group, SKICAT. We thus hope to continue our role as a conduit

between the communities of observational astronomers on the one side, and the applied

software technology and computer science experts on the other. We are well positioned

to do so, and we have a considerable and an ever growing credibility in the astronomical

community. For example, astronomers involved with the planned Sloan Digital Sky Sur-

vey, astronomers at STScI involved with the HST Guide Star Catalogs, astronomers at

IPAC and JPL involved in planning of the Two Micron All-Sky Survey, and some U.S.

astronomers involved with the Rosat sky survey, expressed an enthusiastic interest in our

work so far, and are keen to import our software and methodology. We welcome that as art

additional source of an external scientific evaluation of our products. With the anticipated

scientific results we hope to achieve based on these enabling information technologies, as-

tronomers and space scientists will pay a serious attention to this interface of astronomy

and computer science, and we hope to stimulate other groups to start similar efforts and
collaborations.

Whereas we have approached this work with a specific application in mind, viz., the

3 Terabytes of digitized POSS-II burning holes in our pockets, we have understood from

the start the universality of the problem, and of the proposed technical solutions we are

trying to develop. These techniques are clearly and directly applicable to a wide variety

of astronomical imaging applications, especially sky surveys of any sort: IRAS, Rosat,

and those from the anticipated future missions. There are also potential ground-based

applications of interest to NASA, e.g., the searches for Earth-crossing asteroids, where

a substantial portion of the sky would be covered a few times per night, every night;

our software can be almost directly ported to that problem. In addition to the efficient

analysis of vast amounts of new data, these techniques can be also used to explore the

existing data archives, and have a potential of revolutionizing the archival research (e.g.,

the HST archive, reanalysis of IRAS or HEAO-B data, etc.). This great universality

should attract a very broad constituency of science users, probably with a multitude of

applications which have never occurred to us...

It has thus been our long-term ambition from the onset of this effort to develop

modern software tools for astronomy and space science of the turn of the century, and

lay down the information processing infrastructure for the imminent data flood which

is upon us. We thing we choose the exactly right path, in establishing an excellent and

productive working relations with experts from the NASA-sponsored Artificial Intelligence

community, and we hope to broaden this synergy on both sides. We see this as a first stage
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of a larger technology transfer process,in our casefrom the applied computer scienceto
a basic scienceof astronomy. Perhaps there is an even more fundamental undercurrent
here: Information is the steam of the secondindustrial revolution, and here we are trying
to make somegood engines. If we are successful,others might be stimulated to try, and
this may be a model of the growth processfor the postindustrial economy.

8. Software distribution and and dissemination of results

We have received a very substantial interest from the astronomical community, upon

the presentations of our work at various professional meetings. In particular, groups work-

ing on the Sloan Digital Sky Survey, the Two Micron All-Sky Survey, the HST Guide Star

Catalog, a Center for Astrophysics group doing a deep redshift survey, a University of

California consortium planning an ultra-deep survey with the Keck telescope, a JPL group

planning a survey for the Earth-crossing asteroids, and numerous others. There is also an

international component, from the COSMOS plate scanning machine group in Scotland,

the ESO/ESTEC group in Germany, two groups in France, and a group in Brazil. There

is thus a considerable and substantial interest in the astronomy and space science commu-

nities, both for the SKICAT system itself, and for the data products it is now generating.

We have also seen a lot of interest from the astronomical software specialist community,

at the various ADASS and AAS conferences, and other gatherings.

Catalog management aspects of SKICAT could be used directly for many data archive

systems, a subject which is of a considerable and growing interest in the astronomy com-

munity.

A modified version of SKICAT, with a special data interface, has been used success-

fully by our collaborators at JPL and a group of planetary scientists, to search for and

catalog millions of small volcanos on Venus, from the Magellan radar synthetic images.

This illustrates very directly the broad applicability of our software and methodology.

All of the code is adequately documented internally. All of it is the standard C and

Fortran, and in unix shell script language.

While so far we have been communicating with the interested groups on a case by

case basis, we will establish a more systematic and orderly distribution of the software

and object catalogs. The software itself (except, of course, for the commercial parts for

which a license has to be purchased, such as Sybase) will be deposited in at least two

NASA software distribution sites, along with the proper documentation. Several useful

documents exist or are being completed now, and will be deposited in the form of LATEX

and PostScript files:

• SKICAT Users ManuM

• SKICAT InstM1ation Guide

• SKICAT Plate and CCD Processing Reference

• SKICAT Plate and CCD Processing Cookbook

• SKrCAT Database Reference
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The papersdescribing the system and the relevantparts of the methodology are now

submitted to the professional journals (see the Attachments); other papers in conference

proceedings also cover some specific aspects of the work. They constitute an extended,

and obviously fully public, form of documentation. We plan to publish further results as

they axe produced.

In addition to the specific software distribution, we are now looking into the distri-

bution of catalogs via Internet and WWW. In order to make these vast amounts of data

easily accessible, we will have to make the software available through the same venue. The

network fashions change rapidly, and the exact mechanism by which we will accomplish

this is still under consideration. This may well have a substantial educational component.

Presumably the production and distribution of the catalogs will be funded separately, and

it does not come under the scope of the present contract.

We emphasize that we have a substantial vested interest in seeing that our work is

used by the community. We will thus make every effort to make it easily accessible.
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Abstract

We describe the design and implementation of a software system for producing, manag-

ing, and analyzing catalogs from the digital scans of the Second Palomar Observatory Sky

Survey. The system (SKICAT) integrates new and existing packages for performing the

full sequence of tasks from raw pixel processing, to object classification, to the match-

ing of multiple, overlapping Schmidt plates and CCD calibration frames. We describe

the relevant details of constructing SKICAT plate, CCD, matched, and object catalogs.

Plate and CCD catalogs are generated from images, while the latter are derived from ex-

isting catalogs. A pair of programs complete the majority of plate and CCD processing

in an automated, pipeline fashion, with the user required to execute a minimal number

of pre- and post-processing procedures. Some of the most critical aspects of the image

catalog construction process are the steps required for assuring consistent detection and

attribute measurement across different plates, particularly measurements of magnitudes

and attributes used for classification. We apply a modified version of FOCAS for the de-

tection and photometry, and new software for matching catalogs on an object by object

basis. SKICAT employs modern machine learning techniques, such as decision trees, to

perform automatic star-galaxy-artifact classification with a > 90% accuracy down to _ 1'_

above the plate detection limit. The system also provides a variety of tools for interactively

querying and analyzing the resulting object catalogs.

keywords: image processing, database management, sky surveys



1 Introduction

The critical needs of observational astronomers have shifted from the exclusive realm of

instrumentation to include that of advanced data analysis. The rate and quality of the

data regularly produced by modern instruments frequently overwhelm the tools available to

exploit them. Because of this mismatch, astronomers are forced to develop new methods

and systems in order to make full use of modern astronomical data sets for producing

meaningful scientific results timely and efficiently.

One such data set, large even by modern day standards, is the Second Palomar Ob-

servatory Sky Survey (POSS-II, Reid et al. 1991). When complete, this photographic

northern-sky survey will cover 894 fields spaced 5° apart in three passbands: blue (IIIa-J

+ GG 395), red (IIIa-F + RG610), and near-infrared (IV-N + RG9). While the photo-

graphic survey is still under way, ST ScI and Caltech have begun a collaborative effort to

digitize the complete set of plates (Djorgovski et al. 1992; Lasker et al. 1992; Reid and

Djorgovski 1993). Both the photographic survey and the plate scanning are hoped to be

> 90% complete by the end of 1997. The resulting data set, the Palomar-STScI Digital

Sky Survey, will consist of ,,_ 3 TB of pixel data: ,,_ 1 GB/plate, with 1 arcsec pixels, 2

bytes/pixel, 203402 pixels/pIate, for all survey fields in all three colors. In conjunction

with the plate survey, we are also conducting an intensive program of CCD calibrations

using the Palomar 60-inch telescope, using the Gunn-Thuan gri bands.

Given the enormous resources devoted to conducting such surveys, it is natural to pay

special attention to how, using present day technology, one can make most effective use

of the data once they are available. Attention to this detail, with an understanding of its

increasingly general applicability, prompted the work described in this paper.

Caltech Astronomy and the JPL Artificial Intelligence Group have been engaged in

a collaborative effort to integrate state-of-the-art computing methods for facilitating the

scientific exploitation of POSS-II, applying the latest and most effective technology for

performing any number of analyses of the data. The traditional means of extracting useful

information from imaging surveys is through the construction of object catalogs. Thanks
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to developmentsin thefieldsof patternrecognitionandmachinelearning,it is nowpossible

to reliably construct such catalogs objectively and automatically with a higher degree of

accuracy than ever before.

2 Overall Design

The Sky Image Cataloging and Analysis System (SKICAT) was designed to facilitate the

creation and use of catalogs from large, overlapping imaging surveys, and in particular, the

scans of the Palomar-STScI Digital Sky Survey (DPOSS). The purposes of the software

utilities comprising SKICAT generally fall into three main categories: catalog construction,

catalog management, and catalog analysis. The relationship of these processes is illustrated

in Figure 1. For reducing scans of POSS-II, the first step in SKICAT processing is catalog

construction, which results in individual image catalogs. These, in turn, are registered

within the SKICAT database management system and matched, object by object, with

other catalogs to create a matched catalog of objects appearing in the survey. A matched

catalog, or any individual image catalogs, may subsequently be queried in a variety of

sophisticated ways to facilitate maintenance or analysis of the data.

While our interest in DPOSS provided the initial motivation for the development of

SKICAT, these tools are quite general and applicable to a broad range of data reduction and

analysis problems. For example, the catalog construction software could be rather easily

adapted to processing large-scale CCD or infrared imaging surveys. Likewise, the catalog

management and analysis tools are useful for integrating and making use of an even wider

variety of data sources (e.g., matching radio and x-ray sources with their counterparts

from optical surveys).

Currently, SKICAT provides utilities for generating catalogs from two types of images,

although it was designed to handle any number of types in the future. One image type

consists of a plate scan from the Palomar-ST ScI Digitized POSS-II (DPOSS) survey.

The other, a CCD image, is used for photometric calibration and training the star/galaxy

classifiers applied to DPOSS catalogs. Step-by-step instructions for processing plates and

CCDs from raw pixel into catalog form appear in the SKICAT Plate and CCD Processing



Cookbook(Weir et al. 1994a) and the SKICAT User's Manual (Weir et al. 1994b).

In this first section, we provide an overview of the steps involved in catalog construction,

as well provide an introduction to the catalog management and analysis tasks supported

by SKICAT. In the section which follows, we provide a more detailed discussion of the

scientifically relevant details of the plate catalog construction processes. In the final section,

we describe how matched and object catalogs are constructed within SKICAT.

2.1 Catalog construction

2.1.1 Processing plates

The heart of SKICAT is a collection of programs for the quasi-automatic processing of

DPOSS plates from raw pixel to classified catalog form. Starting with a 1-GB digitized

plate exabyte tape from ST ScI, SKICAT provides the tools for transferring the pixel data

to SKICAT format, measuring the plate sky level and image boundaries, and determining

a photographic density-to-intensity relation. The user then initiates a script, AutoPlate,

which automates the process of cataloging the plate as a set of overlapping 20482 pixel

image 'footprints'.

The three most critical elements of plate processing are detection, photometry, and

classification. By using the Faint Object Classification and Analysis System (FOCAS,

Jarvis and Tyson 1979; Valdes 1982a) for image detection and measurement, SKICAT

is able to reach close to the faintest reliable limits of the plate scans, i.e., down to a

typical equivalent limiting B magnitude of ,,, 22 "_ for galaxies. In addition, by measuring

quasi-asymptotic rather than isophotal magnitudes, using local sky estimates from annuli

surrounding each object, and adapting the measurement thresholds within and across each

plate to adjust for differences in sky level, noise, and pixel-to-pixel correlation, we are able

to obtain very consistent photometry within and across plate boundaries. Details of our

methods for performing photometry and the resulting accuracy appear in Weir, Djorgovski,

and Fayyad (1994).

For classification, SKICAT benefits from the application of recent developments in

machine learning. In particular, it utilizes the GID3* and O-Btree decision tree induction



software(Fayyad1991;Fayyadand Irani 1992;Fayyadand Irani 1993),togetherwith

the Rulersystem(Fayyad,Weir, and Djorgovski1993)for combiningmultiple treesinto

a robust collection of classification rules. These algorithms work by using measurements

of a training set of classified objects and inferring an efficient set of rules for accurately

classifying each example. The rules are simply conjunctions of multiple "if...then.." clauses,

which condition upon any of eight different object parameters to determine an object's

classification. The real advancement in using this type of classifier relative to those used

in most large-scale surveys to date is twofold: first, we are able to condition upon a larger

and more diverse set of attributes; second, we allow the computer to decide what are the

optimal number and form of the rules. Additionally, this technique readily generalizes

to other, more difficult forms of classification, such as distinguishing galaxies by their

morphology.

We have created separate sets of classification rules for objects from J and F band sur-

vey plates. We used CCD calibration data, which generally have superior image quality, to

construct the training sets used to train the plate object classifiers. Classifications derived

from the CCD data, more reliable than "by eye" estimates from the plates themselves,

were matched to plate measurements to form the training sets. The measurements used to

perform classification are a set of robust, renormalized object parameters that we found to

be distributed in a stable fashion within and across plates. By training the algorithms to

classify based on these attributes, we were able to nearIy completely remove the effect of

PSF variation across a given plate, or even between different plates. Average accuracy of

star-galaxy classifications as a function of magnitude may be determined from tests using

independent CCD-classified plate data. In both the J and F bands, we found the accuracy

to drop below ,,_ 90% at about the same equivalent magnitude level, B ,,, 21.0 "_. This is

,,_ 1m above the plate detection limits, and nearly 1TMbetter than what was achieved in

the past with similar data. This increase in depth effectively doubles the number of galax-

ies available for scientific analysis, relative to the previous automated Schmidt surveys.

The details of our classification methods and results are presented in Weir, Fayyad, and

Djorgovski (1994).
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PlateX,Y to RA,Decassignment,like objectclassification,is automaticallyperformed

in the final stagesof catalogconstruction. Currently,the astrometrictransformationis

performedbasedon the astrometricsolutionsprovidedby ST ScIas part of their plate

scanningoperation,but improvedsolutionsare easily implemented. As both astrometric

assignment and final object classification rely only upon existing catalog measurements,

not raw pixel data, they may be easily repeated at later times using a different set of clas-

sification rules or improved astrometric solution coefficients. SKICAT provides database

manipulation tools that facilitate the continuous refinement of catalogs as better calibra-

tion, or even entirely new algorithms, become available.

2.1.2 Processing CCDs

CCD catalogs are constructed using most of the same tools as are applied to plate data.

A script called AutoCCD, analogous to AutoPlate, is used to quasi-automatically process

an image from pixel into catalog form. The primary differences between plates and CCDs

are in the forms of pre- and post-processing that are applied. In particular, a whole

host of standard CCD calibration procedures (e.g., de-biasing, fiat-fielding, photometric

calibration, etc.), far different from those for plates, must be followed before running

AutoCCD. In addition, we found FOCAS's built-in classifier to provide very accurate

results on the CCDs down to the plate detection limit, which is our magnitude limit of

interest. We were, therefore, able to let FOCAS automatically classify each object, with

just a quick follow-up check by eye, producing excellent quality data without the need for

much human interaction or more sophisticated classification algorithms.

CCD data are used for two purposes in our work with DPOSS. First, they provide

"true" object classifications, at very faint levels, for our classifier training sets. Because

the CCD images are of higher resolution and signal to noise ratio (SNR) than digitized

plates, we are able to assign accurate classifications to objects whose morphology is not

reliably distinguishable, even by an expert, when looking at the plate image alone. Through

the machine learning process, the aim is to train the computer to consistently classify these

faint objects, thereby enabling it not just to mimic a human's performance, but actually



improve upon it.

The second, most important, purpose for the CCD measurements is to provide pho-

tometric calibration for the pIate catalogs. We use CCD exposures in the Gunn-Thuan

(Thuan and Gunn 1976) g, r, and i bands to calibrate the IIIa-J, IIIa-F, and IV-N plate

data, respectively. These CCD bandpasses provide a reasonable match to the photographic

emulsion plus filter passbands. Details of how we perform our CCD photometry and the

Ievel of accuracy we achieve appear in the paper Weir, Djorgovski, and Fayyad (1994).

2.2 Catalog management

Once the image catalogs are constructed, they must be registered within the SKICAT

database. Modifications and updated versions of the catalogs are maintained through

database management software and tracked by the SKICAT system. The structure of the

SKICAT database was specifically designed to facilitate the creation and classification of

image catalogs, comparison of object photometry and classifications, revision of object

measurements, and the construction of larger, matched catalogs.

For each plate or CCD image, the catalog construction scripts generate a header and

features table, together comprising what we term a SKICAT catalog. A detailed description

of the most commonly referenced SKICAT database terms appears in Appendix A. The

header table consists of columns of parameters used to guide the catalog construction

process, the name of the image from which the catalog was derived, the location of the

image on offiine storage, comments, and other information necessary to identify the data

source and reconstruct the catalog from scratch if necessary. The features table contains

one row for each detected feature in the image. The columns represent the measured

attributes of each feature. Approximately 50 parameters per object are measured and

saved in the individual plate and CCD catalogs.

After the construction process, catalogs within SKICAT must be registered in the

SKICAT system tables, where a complete description and history of every catalog loaded

to date is maintained. Catalog revisions, that might result from deriving new and improved

plate astrometric solutions or photometric corrections, are also logged. Multiple versions of



eachimagecatalogmayexist,eachreflectinga differentprocessinghistory. The SKICAT

systemtablesalsokeeptrack of whichcatalogsarecurrentlyloadedon-line,or physically

loadedondisk. SKICATprovidestoolsfor quicklyandeasilysaving/loadingcatalogsoff-

line/on-line. Only registeredcatalogsmaybemovedto/from off-linestorageor matched

with othercatalogs.

Multiple, overlappingcatalogscanbematchedinto a specialSKICAT data structure

calledthe matchedcatalog.The matchedcatalogconsistsof a matchedfeaturestableand

a table of those catalogs comprising it. The matched features table contains independent

entries for every measurement of every object detected in the constituent catalogs. Because

of size and speed considerations, not every attribute may feasibly be saved within the

matched catalog, but a sufficiently small subset of parameters is generally more than

adequate for most uses of the data. Of course the saved catalogs themselves provide a

complete archive of the full list of parameters if they are ever needed. SKICAT allows

for multiple matched catalogs to be on-line at once, and they may be saved and loaded

to/from off-line storage and a new one created at any time.

The matched catalog may be queried using a sophisticated filtering and output tool to

generate a so-called object table, which contains just a single entry per matched object.

With this tool, the user may, for example, generate a distributable data product, such as

a galaxy list, from the current set of matched plate catalogs. The tool may also be used

to perform consistency checks within catalog overlap regions, or to perform specialized

scientific analysis over large survey regions. For example, a user may request a listing of

all stars within a well-defined section of sky covered by multiple J and F plates, specifying

exactly which object attributes to report (e.g., magnitude, RA, Dec, etc.) and from which

source (specific J plates, average of all F plates, etc.).

Catalogs may be easily altered using a procedure that allows arbitrary operations on

table columns. This user simply specifies the C code which describes the computation

for the column value as a function of any other column values, external data flies, or

constants. The utility automatically generates the necessary code for transforming the

table and executes it. This utility is used in a number of contexts in the SKICAT system,



includingthe computation of right ascension and declination, as well as for applying the

classification rules. In the same way, catalogs may be re-calibrated or otherwise adjusted in

light of new or improved data. Such updates might include applying a field-effect correction

to a plate's list of magnitude or performing new classifications using an improved rules set.

A catalog may aiso be modified by using a utility that updates selected columns from

corresponding columns in the matched catalog. This procedure would be appropriate if, for

example, the entries in a matched catalog were calibrated, and the calibrated measurements

needed to be passed back to the original catalogs for archival purposes. An updated

catalog could subsequently be re-registered as a new version of the e_sting catalog. Both

the original and new header information would now be saved in the system, maintaining a

complete history of catalog revisions. Via this mechanism, SKICAT is designed to maintain

a "living," growing database, instead of a data archive fixed for all time.

2.3 Catalog analysis

The third layer of SKICAT, which is still under development, will consist of a powerful tool

box of modern data analysis algorithms to be applied for survey data space exploration and

the scientific analysis of the catalogs. It will facilitate more sophisticated scientific inves-

tigations of these expanding survey data sets, including a multivariate statistical analysis

package, and a wide variety of Bayesian inference tools, objective classifiers, and other

advanced data management and analysis packages and algorithms.

The analysis tools included in the current version of SKICAT are the GID3*/O-Btree

decision tree induction software and Ruler program for classification learning, as well as the

extremely useful collection of stream processing routines included in the standard FOCAS

distribution. The very same classification learning software which was used to create the

classifiers in SKICAT's plate cataloging script are available for use on any SKICAT data

set, or even data from external sources. SKICAT provides an environment for implementing

these tools to train and produce classifiers for scientific uses of the DPOSS, or any other

catalogs.

We also intend to explore the potential of machine-assisted discovery, where modern,
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artificial intelligence-basedsoftwaretoolsautomaticallyexplorelargeparameterspacesof

data and draw a scientist'sattention to unusualor rare typesof objects,or nonobvious

clustersof objectsin parameterspace.WehavebegunapplyingtheAutoclass(Cheeseman

et al. 1988) unsupervised classification software to DPOSS, with plans to implement this

and other Bayesian inference and cluster analysis tools within SKICAT in the future.

2.4 Application environment

The SKICAT system is largely written in C, Unix shell scripts, and FORTRAN, and it is

portable across Unix systems. As mentioned before, SKICAT is built around and incorpo-

rates a number of preexistent software packages: FOCAS routines for image detection and

measurement; the GID3*/O-Btree/Ruler induction software for object classification; and

the Sybase commercial relational database management system (DBMS) for maintaining

and accessing the data. While SKICAT was developed using these packages, none are irre-

placeable. Each package serves its purpose and, because of the modularity of the system,

could be substituted for another which performs the same function. In addition, SKICAT

provides quick and easy access to most system utilities through a common X-Windows

graphical user interface, while users familiar with Unix can access the same utilities di-

rectly from the Unix command line.

SKICAT was designed so that all database system operations specific to Sybase would

be transparent to the user. The user interfaces and underlying Unix utilities have been de-

signed to allow the user to select and specify subsets of catalogs using a slightly expanded

version of the industry standard SQL (Standard Query Language). This extended query

language provides additional features of specific interest to users in astronomy. For exam-

ple, unit conversion capabilities have been provided to allow the user to specify positional

values in a variety of astronomical units (e.g., hours, minutes, and seconds in addition to

degrees and radians). Most database operations controlled through the SKICAT software

are implemented using SQL, so that it would be relatively easy to replace the underlying

DBMS if the need arose.
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3 Constructing Plate Catalogs

In this section, we provide more detail on the steps involved in constructing a catalog from

a DPOSS scan. Additional details may be found in Appendix B. Aside from the initial

pre-processing steps, the process of cataloging a CCD image is very analogous to that for

a plate. We provide the details of these operations in Appendix C.

3.1 Pre-processing

Once a POSS-II plate has been scanned by ST ScI, only a few manual steps are required

before it may be pipeline processed using a Unix command-line-based program called

AutoPlate, or the X-windows-based graphical user interface to it. A digitized POSS-II

plate scan is provided in the form of pixel data consisting of arbitrarily scaled photographic

densities. Each DPOSS plate image is 23,040 x 23,040 in size. After defining the plate

boundaries, and the sky and saturation densities, the first step in processing the plate is to

perform the photographic density to arbitrary intensity conversion. A SKICAT program

automatically retrieves the portion in the southwest corner of each image that contains the

16 sensitometry spots that appear in each POSS-II plate. This program assists the user

in running an IRAF script to measure the 16 spots and compile a llst of the densities. It

then prompts the user to interactively fit an 'HD' curve to the data points, providing a

density to intensity transformation for the plate scan.

The mathematical formula we use to fit the measured plate densities (D) to relative

intensities (I) is:

log I = f(O) (1)
(Ds - D) × (Dr- D)

where P(D) is a polynomial function of the density, and the saturation and toe densities,

Ds and DT, are those corresponding to fully exposed and unexposed portions of the plate,

respectively. The polynomial coefficients, together with the toe and saturation values,

establish the conversion applied to each pixel value whenever image blocks are subsequently

loaded and mosaiced to form larger images. As the average sky density is generally far

above the toe level, it is usually desirable to avoid fitting the polynomial to the lowest few

intensities, thereby improving the fit in the other portions of the curve. Similarly, the most
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nearlysaturatedpoint or two is alsogenerallyignored.After severaliterationsadjusting

the relevantparameters,wehavefoundit possibleto reducethe residualbetweenthe fit

andall accepteddatapointsto lessthan5%in intensity.

Thereis a long history to efficientlymodelingthe HD curve. The methodemployed

by ST ScI (Russelet al. 1990), for example, involves a more complicated formula and

averaging many plates together. By their own admission_ however_ they find the more

complicated expression to be overkill for the linear part of the curve of most interest. In

addition, we found considerable variation of the curve among different plates, requiring

independent fits. As described in Weir, Djorgovski, and Fayyad (1994), we also find the

instrumental magnitudes resulting from these fits to be extremely consistent from plate to

plate, in the sense of only requiring a single zero point offset to match them. This provides,

in our opinion, the most important test of the validity of our linearization scheme.

3.2 AutoPlate processing

AutoPlate is a C-Shell script which executes a suite of other scripts, C code, and Fortran

programs to conduct the pipeline processing of plate scans from their raw pixel form to

SKICAT catalogs. The steps involved include everything from loading the pixel data

from exabyte tape, to image detection and measurement, to catalog construction and

quality control. The majority of image processing functions are accomplished using FOCA$

routines, while Sybase is used for database management.

3.2.1 Overlapping footprints

Each plate is analyzed as a set of 13 x 13 overlapping 'footprint' images. After pre-

processing, a plate scan exists on exabyte tape as 23 Vax VMS savesets of 23 images

each (see Figure 2). These image blocks are pasted together to form image footprints,

which form an overlapping grid covering the entire plate (see Figure 4). Each footprint is

20482 in size, with a minimum overlap between adjacent footprints of 272 pixels, or ,,, 4.5

arcmin. The large overlap allows all but the largest objects to be reliably measured in

this piecemeal fashion, while providing a quality control check and statistics on footprint
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dependentmeasurementerrors.In fact,analysisoftheseerrorsindicatethat thesystematic

errorsinducedby processingthe scanin this fashionareat leastanorder of magnitude

belowrandomimagemeasurementerrors.

A numberof distinct levelsof processing are applied to each footprint, leading to the

construction of individuM footprint features tables. Footprints are identified by a row

number within the plate and by a column number within that row. They are created and

processed a row at a time, from bottom (south) to top. Up to nine image blocks must

be mosaiced together to form a single footprint image; up to three rows of image blocks

must be loaded on disk to form an entire row of footprint images. As each footprint row is

processed, AutoPlate loads the necessary image blocks from tape and deletes unnecessary

blocks from disk.

Consecutive footprint images, from left (east) to right, are created just prior to their

processing. Up to two rows of footprints are always on disk, facilitating the detection of

vertical mismatches between footprint tables. Each row of footprint features tables is saved

to the plate features table only after passing a number of quality control checks meant to

assure uniformity of catalog construction. This process is described in greater detail in the

Quality Control section below.

3.2.2 Image analysis

Footprint images are analyzed in a few ways prior to object detection. First, a quality

control check is performed by measuring correlations between alternating pairs of pixel

rows in the plate scan. This check was developed in response to problems detected in the

first batch of ST ScI scans. These correlations resulted from the scanning machine not

taking equal size vertical steps before raster scanning from the right or left side of the

plate. The problem seems to have been corrected, and all previously corrupted plates were

re-scanned. Nonetheless, we still perform the check as a part of our production system.

Next, AutoPlate creates a re-binned version of the image with one pixel per 8 × 8 in

the original. This scale matches that of the 'sky' image produced by the FOCAS detection

algorithm. To provide the FOCAS algorithm with a good first guess of the footprint sky, the
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valueis initially estimatedbybinningtheimageinto blocksof 642 pixels each, accumulating

the median and quartile sigma 1 for each block, then accumulating the median and quartile

sigma for all of the block measurements. Images of the sky median and sky sigma are

saved at this reduced (one pixel per 64 × 64) scale. This robust estimation procedure

provides relatively accurate initial sky and sky sigma values, even when relatively large

and bright sources exist in the image. Seeded with these values, the FOCAS detection and

background estimation procedures have been found to work well. We were able to test

the accuracy of this approach by applying it to the simulated plate images we describe in

Weir, Djorgovski, and Fayyad (1994), which were also used to help optimize the choice of

detection and measurement parameters.

AutoPlate also estimates the pixel-to-pixel correlation (horizontal and vertical com-

bined) within each footprint. For this measurement, in addition to applying the same

binning and median filtering procedure as above, AutoPlate excludes all pixels two and a

half sigma above the sky level. This technique was found to provide an extremely robust

and accurate measurement for all levels of pixel blurring, even when large saturated objects

appear in the image.

3.2.3 Object detection

The basic processes of object detection and measurement are accomplished using only

slightly modified versions of the standard FOCAS routines (Jarvis and Tyson 1979; Valdes

1982a). Algorithmic details of these programs may be found in the FOCAS documentation

(Valdes 1982b). Here we describe how we apply these functions and what are the relevant

parameter settings.

Just prior to object detection, a FOCAS catalog is automatically initialized for the

current footprint. The appropriate header values are determined in AutoPlate based upon

the current footprint row and column numbers, and from information derived from the

1We define a quartile sigma as 0.7415 times the difference between the 75th and 25th percentile values, a
robust estimate of the sample standard deviation that is insensitive to outliers. For a Gaussian distribution,
this is virtually identical (in the limit of large sample sizes) to the standard deviation defined in the normal
way.
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plate imageheader.The FOCAS'detect' commandthenusesthe headerparametersfor

driving its objectdetectionandskyestimationprocedure.Detailsof thedetectionprocess

appearbelow.Theresult of this commandis a catalogof features,or contiguouspixelsa

certainthresholdabovethe background,andmeetinga minimum area and signal to noise

ratio (SNR) requirement. The FOCAS detect command also produces an estimate of the

sky with a one pixel per 8 × 8 resolution. If this estimate significantly differs from the

median sky image computed previously, an error is reported and processing ceases.

For optimal sensitivity, the FOCAS detection algorithm applies a threshold equal to

some number of estimated standard deviations (sky sigma) above the locally estimated

sky. The assumed sky sigma is the robust value computed for the footprint, as described

in the Image Analysis section above. However, because of spatially varying pixel-to-pixel

correlation within each plate scan, using the same multiple of sky sigma as the threshold

for all footprints would not result in the same detection sensitivity.

To compensate for this effect and approach a common level of sensitivity between and

within plates, we sought to derive a factor by which to scale the measured sky sigma so as

to make it correspond to approximately one standard deviation in an unblurred version of

each footprint. To establish this scaling factor as a function of measured blur, we created

a simulated footprint image matching the average noise 2 and object number statistics of

real footprints, then we convolved it with a series of Gaussians of different width. Given

the convolution kernel, the appropriate scale factor is simply the square root of the inverse

of the sum of squares of the normalized kernel elements. By measuring the pixel-to-pixel

R 2 for each image, we are able to empirically derive a mapping from measured (square)

correlation to scale factor. We found a sixth order polynomial to provide a good fit to the

relation (see Figure 5). We also established the relation using a blank simulated sky image

and derived virtually identical results, lending confidence in the robustness and accuracy

of our correlation estimation procedure.

_The appropriate level of uncorrelated, Gaussian random noise was determined in an iterative fashion.
First, we found a Gaussian kernel which, when convolved with the image, produced a degree of blur, as
measured by the pixel-to-pixel correlation, closely approximating that of an average footprint. We then
found that noise amplitude which, after convolution, resulted in a measured sky sigma closely matching
that of an average footprint.

16



Wethenused2.5timesthisscalefactortimestheestimatedsky sigmaasour detection

threshold. The additional detection parameters required by FOCAS include a minimum

object area, "significance limit" for object detection, and pre-detection blurring kernel.

We require every object to comprise six contiguous pixels. We set the significance limit to

-100, which is equivalent to turning off this SNR requirement (see the FOCAS manual for

details). We used the built-in FOCAS blurring function, which is simply:

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

The FOCAS detection algorithm works by convolving the image with this kernel, then

searching for contiguous pixels with values greater than the locally estimated sky by the

specified detection threshold. To adjust for the convolution, which is meant to improve

the sensitivity of the detection algorithm, the detection threshold is scaled by the square

root of the inverse of the sum of squares of the normalized kernel elements. Note this is

the same blurring correction we applied earlier to account for the correlation induced by

the scanning process.

Our choice of detection parameters, in particular our scaling correction for pixel-to-

pixel correlations, results in relatively consistent sensitivity as a function of plate quality, as

evidenced by the relative uniformity of object density we detect from footprint to footprint

and plate to plate. Our choice of threshold, minimum area, significance limit, and pre-

detection blurring were chosen after extensive tests on both real and simulated images,

establishing some feel for the trade-off between completion (percentage of real objects

detected) and contamination (percent of detected objects which are not real). On simulated

images, this combination of parameters resulted in an average FOCAS detection isophote

corresponding to roughly 2.0 uncorrelated sky sigma, which is sufficiently far into the noise

as to pick up every object readily detectable by eye. It also resulted in what we considered

a manageable number of detections per footprint and plate, in excess of the density saved

in previous Schmidt plate surveys. Typical galaxy detection limits for the J and F DPOSS
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platesarefoundto be21.0m to 21.5 'n in g and 20.1TM to 20.6 TM in r, respectively. For point

sources, the limit can extend up to half a magnitude fainter.

3.2.4 Object measurement

The local sky brightness for each feature is measured using the FOCAS 'sky' command. It

measures the median pixel value in an annular region surrounding each feature, avoiding

pixels that are within the detection isophote of another feature. The accuracy and system-

atic effects of this sky measuring algorithm are addressed in Weir, Djorgovski, and Fayyad

(1994), where we discuss details of our photometry.

After obtaining the sky estimate, additional attributes for each feature axe measured

using the FOCAS 'evaluate' routine. The total number of measurements number more

than 30, including those in Table D: The indicated magnitudes are instrumental and are

computed according to:

m = 30.0 - 2.5 log L

where L is the luminosity, or sky-subtracted integrated intensity. The offset of 30.0 is

arbitrary and was chosen to make the instrumental magnitudes approximate the final

calibrated values within a magnitude or two. The aperture magnitudes are computed

using a five arcsec radius. The 'total' magnitude and area are computed by 'growing' the

detection isophote out a pixel at a time in all directions until the total area is at least

twice the original. This magnitude is meant to provide a flux measurement less biased

with respect to surface brightness profile, approximating something like an asymptotic or

true total magnitude. The cost for decreased systematic error is greater sensitivity to sky

subtraction, integration over more noisy pixels, and hence, increased random error (relative

to isophotai or aperture magnitudes). A substantial portion of the paper Weir, Djorgovski,

and Fayyad (1994) is dedicated to an analysis of the photometry obtained from DPOSS

using SKICAT, including the results of detailed simulation studies.

FOCAS also sets a number of flags for each feature, each of which is saved as an

attribute. These flags indicate such things as whether the object touches the edge of the

footprint, the object is below the sky level in integrated intensity, the object's size exceeds
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currentFOCASlimits, therearesaturatedpixelsin theobject,or theobjectwasnot split

at any levelby the FOCASdeblendingroutine. Additionalusefulattributesareobtained

by taking non-llnearcombinationsof someof thoselisted in TableD. For example,using

theintensity weightedsecondmoments,wecancalculatethe ellipticity and positionangle

of eachfeature. Additional attributes, the so-called'revised'onesdescribedbelow,are

definedby the positionof a featurewithin the statistical distribution of that footprint's

featureswithin somemeasuredparameterspace(e.g.,within the planedefinedby the first

radialmomentand thetotal magnitude).

3.2.5 Object deblending

After each feature in a footprint has been evaluated, SKICAT next applies the FOCAS

'splits' command. Effectively, this routine runs the detection algorithm on every existing

feature, but using successively higher thresholds. 'Islands' detected at a given threshold are

entered into the catalog as distinct features, and all attributes are remeasured for them.

The 'parent's' flux is divided between the 'children' according to the ratio of isophotal

fluxes obtained using the higher threshold. This process continues recursively until no

more islands are detected.

All parents and intermediate children (i.e., a feature's full family tree) are saved within

the FOCAS catalog and likewise within SKICAT. Each feature is referenced by an entry

and subentry number. A parent and all of its children share the same entry number.

Children are distinguished by the hierarchically constructed subentry number: subsequent

generations append additional digits to the end. The leaf or leaves in a feature's family

tree correspond to indivisible objects and are marked as such by a flag attribute.

We note that improvements can certainly be made to the deblending process. For

example, other methods could be used to improve the quality of the photometry of the

deblended objects, better take deblending into account when matching overlapping images,

handle the extreme crowding conditions to be found in lower Galactic latitude POSS-II

plates, etc. Nonetheless, we find the present implementation to be more than sufficient

even for detailed analyses of higher latitude plates, and that it at least represents a step
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abovereductionwithout theuseofdeblendingat all, asin thecaseofsomeprevioussurveys

(e.g.,APM, Maddoxet al. 1990).

3.2.6 Classification related measurements

An additional set of attributes are measured solely for the purpose of facilitating feature

classification. Four revised attributes are determined by automatically estimating and

subtracting the 'stellar locus' from the parameters Moore, the magnitude of the brightest 3

× 3 pixel region, of total intensity Lco_; the log of the isophotal area, log A; the intensity

weighted first moment radius, rx; and S, where

A
S=

log[Loor /(9× I)]"

and I is the average intensity of the detection isophote. The stellar locus is the attribute

value as a function of magnitude around which point sources are fairly narrowly distributed,

at least at brighter magnitudes. As described in Weir, Fayyad, and Djorgovski (1994), we

have found that the resulting revised attributes are relatively insensitive to footprint-to-

footprint, and even plate-to-plate, variations, and are thus robust parameters for use in

feature classification.

In order to derive even more powerful classification attributes, we form an empirical

estimate of the PSF for each footprint. Along with magnitude and ellipticity, the four

revised attributes are fed as input to a decision tree classifier, which culls out a list of

'sure-thing' stars. This represents a significant application of machine learning technology

to the classification task. A FOCAS routine then adds images of these stars to form a

two-dimensional PSF template.

Using the PSF template, the FOCAS 'resolution' routine determines the best-fitting

'scale' (a) and 'fraction' (/3) values, which parameterize the fit of a blurred (or sharpened)

version of the PSF to each feature (Valdes 1982a). The template used to model each

feature is of the form:

= + (1 -

where ri is the position of pixel i, a is the broadening (sharpening) parameter, and
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is the fractionof broadenedPSF.This template-basedapproachis the coreof FOCAS's

Bayesianclassificationmethod. Objectsare classifiedas stars, galaxies,artifacts, etc.,

accordingto their maximumlikelihood (best-fitting) location within two-dimensional scale

and fraction space. Extensive tests performed by Valdes (1982a) indicate that one can

achieve significantly higher accuracy in star/galaxy separation with this template-fitting

approach versus simpler approaches employed previously. Weir and Picard (1991) explicitly

tested the use of these two techniques on digitized Schmidt plate data and confirmed this

result.

In the present version of SKICAT, we combine these resolution parameters along with

total magnitude, ellipticity, and the four revised attributes described above to form an even

higher dimensional space in which to perform feature classification. Actual classification is

run as a post-processing procedure, using the measured attributes within the plate catalog.

One can thereby alter the existing, or create an entirely new, classifier and apply it to a

catalog at any future date. The classifier currently applied to plate features within SKICAT

was generated using the GID3*/O-Btree and Ruler decision tree induction programs. A

full description of how it was created and the results we have achieved on actual plate data

appears in Weir, Fayyad, and Djorgovski (1994). The net effect is that by employing this

new technology, we are able to go about a magnitude deeper in achieving accurate object

classifications, resulting in approximately three times larger classified object catalogs than

in previous surveys using comparable data.

3.2.7 Quality control tests

Each individual footprint FOCAS catalog, and its corresponding revised attribute list, is

joined into a Sybase table for subsequent processing. As a quality control check, the current

footprint features table is matched with the tables of the footprints to its left and bottom,

if they exist. If any major discrepancies are detected in the mean or standard deviation

of measurements in the overlap, processing is halted and an error reported. Otherwise,

AutoPlate appends these results to a summary file characterizing the footprint row.

After a row is complete, Autoplate searches the footprint summary file for outliers
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and trends, halting the program if it encounters any problems. If none are found, the

previous row of footprints is added to the Sybase plate catalog and any auxiliary files

are saved. First, the row's footprint summary file is appended to the corresponding file

for the plate. Next, each footprint's compressed original, sky, median sky, and sky sigma

images are pasted into corresponding composite images for the entire plate. Footprint

specific parameters are appended to a footprints file. All features with central coordinates

in a nonredundant portion of the plate image are added to the plate features table, while

features whose outer isophotes extend beyond any single footprlnt's boundaries are saved to

a border objects list. Generally these are features which appear at the edge of the plate. In

addition, AutoPlate appends to a list of footprint overlap statistics, and summary thereof.

Data for the previous row are deleted after each of these operations is complete.

After all rows have been processed, the system checks the footprint summary file for

outliers and trends among footprint statistics in the vertical direction. Provided none

are found, catalog generation is complete, a plate catalog header is created (if it was not

already) and all remaining footprints and image blocks are deleted.

3.2.8 Data products

The final products of an AutoPlate run are a SKICAT catalog, consisting of a Sybase format

features table and header table, and several auxiliary files. The plate catalog resides on the

Sybase disk partition while the auxiliary files are saved within a Unix directory hierarchy

created specifically for that plate. The auxiliary files include the following images: a re-

binned version of the plate scan containing the average of every 8 x 8 pixels in the original;

the 'sky' image produced by the FOCAS detection algorithm at the same scale; images of

the median and quartile sigma of the plate scan at a one pixel per 64 × 64 scale. Besides

providing an overall reality check of the AutoPlate process, these images may be valuable

for future scientific programs, such as searches for low surface brightness galaxies.

In addition, SKICAT saves each of the FOCAS 'areas' files produced for each footprint.

These files contain a run-length encoding of all the pixels comprising every feature in each

image. This information may prove useful in the future for locating the precise extent of
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a featurewhenall of the imagerydata,in additionto catalogs,arereadilyavailableonline

for queryingandanalysis.

Theotherauxiliaryfilesproducedby AutoPlatearethoseproducedandusedfor qual-

ity control purposes.Theyincludea footprint statisticsfile, containinglists of statistics

measuredfor eachfootprint (e.g., numberof featuresdetected,averagesky level,etc.)

whichareusedto detect trendsandoutliersamongthe footprintsalonganygivenplate

rowor column. The otherquality controlfile containslists of all of the overlapstatistics

measuredbetweenadjoiningfootprints.

3.3 Post-processing

After aplate cataloghasbeencreatedbyAutoPlate,therearestill a fewoperationswhich

must be performedasa part of the plate's standard pipeline processing. These include

the assignment of Right Ascension and Declination (RA,Dec) to each object, as well as

classification. As neither of these operations require access to the pixel data themselves,

one is able to re-run either of these multiple times in the future using new and better

coefficients or algorithms.

3.3.1 Astrometric transformation

The J2000 RA and Dec of the central pixel (specified in plate standard coordinates by the

XC and YC attributes) of each feature is calculated using coefficients in the plate catalog

header. These coefficients are initially provided by ST ScI and are supposed to be good

to ,,_ 0.5 arcsec RMS accuracy over scales less than about a square degree. When in the

future better plate solution coefficients are available, it is simply a matter of entering them

in the catalog header, then re-executing a catalog modifying procedure to assign a new RA

and Dec to each feature.

3.3.2 Classification

The plate features classifier provided with SKICAT was generated using the GID3*/O-

Btree and Ruler programs, and is implemented as a procedure executed by a more general
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utility for modifyingcolumnswithin a databasetable. By applying a set of rules that

condition upon a subset of the parameters in a plate features table, the procedure provides

a classification to each object. An entry within a plate's header table specifies the classifier

rules file to use. Therefore, it is simply a matter of editing this field and re-running

the appropriate column modifying procedure to apply a new and improved rules-based

classifier to the catalog. Similarly, an entirely different plate classification algorithm could

be designed in the future and implemented as an alternative column modifying procedure.

3.3.3 Bright object editing

Currently, the SKICAT user is required to hand create a list of the 'bad regions' within the

plate, such as areas corrupted by bright stars. The SKICAT Plate and CCD Processing

Cookbook provides a description of how to create such a list using the SAOImage display

program. One detects the bad regions by analyzing the 8 × 8 binned average of the full

scan image produced by AutoPlate. By displaying this image, the user may easily pick out

and mark the 100 or so brightest objects in the scan which will have been poorly processed

by AutoPlate. It is particularly important to mark the regions surrounding bright stars,

as their halos and spikes are split into sometimes hundreds of small artifacts which may

be mistaken for real objects in the catalog (e.g., see Figure 7).

At this time, the bad regions list is not used to filter or flag entries in the SKICAT

plate catalog itself, but rather for subsequent filtering of ASCII data files generated by

queries of the plate or matched catalog. Details of how this filtering is performed are in

the Queries section of the SKICAT Plate and CCD Processing Cookbook. We also note

that the entire process of bright object detection will also be automated in the near future.

3.3.4 Catalog registration

Once all of the aforementioned processes are complete, the plate catalog is ready for reg-

istration into the SKICAT catalog management system. This loads the catalog header

information into the SKICAT System Tables, allowing it to be matched with other cata-

logs or saved to/loaded from tape. At this time, the plate catalog, along with the auxiliary
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files,aregenerallysavedonanarchivetape,and plateprocessingis complete.
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4 Constructing Matched and Object Catalogs

4.1 Matched catalogs

SKICAT provides the ability to match features from multiple plate and CCD catalogs based

on the similarity of their measured positions in celestial (RA,Dec) coordinates. This pro-

cedure is essential for analyzing objects measured in multiple bandpasses, such as finding

optical IDs of non-optical sources; constructing object lists spanning multiple overlapping

images; and for performing consistency checks of object measurements and classifications.

Details of the data structures pertaining to the matched catalog appear in Appendix D.

The process of adding a catalog to the matched catalog involves matching each feature

in the catalog to the nearest object meeting certain criteria within the matched catalog,

after solving for a small systematic X,Y offset between the two. To perform this matching,

the filtered source catalog is broken down into a user-specified number of solid angle 'seg-

ments'. A best fit transformation in X and Y is solved for using a robust fitting algorithm

and applied to each segment when it is matched. To optimize this process, the catalog

should be split into as many segments as necessary to allow for systematic deviations in

its astrometric accuracy.

For each segment, the matcher attempts to minimize the overall match error (defined as

the average matched feature difference) separately in X and Y by repeating the matching

process until the errors meet specified criteria. For each feature in a segment, the matcher

attempts to find the closest feature within some search radius within the matched catalog,

offsetting by the previous iteration's match error in X and Y. These errors are accumulated

over each iteration to form a mean offset. The initial search radius is given by the user;

subsequently it is determined as some multiple of the measure standard deviation in the

previous iteration's offsets. These average offsets and the standard deviations are computed

only for a quartile-sigma clipped fraction of the matches from the previous iteration, in

order to exclude outliers from the estimate. This matching and estimation procedure

repeats until the iteration's match error in both X and Y is less than some multiple of

the estimated error in the mean offset. The marcher then performs a final pruning of the
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matchedobjectlist, passingonly thosematcheswith aresidualChi-squarederror lessthan

somethreshold.

Thematcherthenassignseachfeatureanidentificationnumberaccordingto thematch

results. Featureswith no correspondingobject in the matchedcatalogareassignedthe

default next ID, which is then incremented.For eachfeaturefrom the segment,a row

includinga user-specifiedsubsetofattribute columnsisappendedto thematchedcatalog's

featurestable.Thematchandconvergeprocessisrepeatedfor eachsegmentof thecatalog.

After eachsegmenthasbeenmatched,informationabout the input catalogis addedto

systemfilesdetailingthe contentsof the matchedcatalog.

4.2 Object catalogs

While the matchedcatalogis the mostcomprehensiveformof databaseproducedby SKI-

CAT, it is generallytoo unwieldyfor directusein largescalesurveyanalysis.By allowing

a virtually unlimitednumberof independentfeatureentriesperobject,very little data re-

duction actually takes place in the matching process. Although in practice, one generally

limits the number of attributes saved in the matched catalog, this still leaves unsolved the

problem of combining the multiple measurements that are usually present for any given

attribute and feature.

To provide the user with power and flexibility in accessing the matched catalog for

scientific analysis and calibration, we developed a sophisticated database querying mecha-

nism. This program summarizes data from the matched catalog to form an object catalog,

which by our definition contains just one entry per object. The query program has two

primary inputs: a filter and an output specification file. The filter basically defines the

conditions that an object, or its constituent features, must meet in order to be passed on

for output. A full description of the filter language appears in the SKICAT Users Manual

and specific useful examples appear in the Query section of the SKICAT Plate and CCD

Processing Cookbook. These filter conditions might include a requirement on the number

of features measured per object, that an object be measured in a particular catalog, that an

object not be measured in a particular passband, that an object's magnitude falls within a
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certainrange,etc. The mostimportant filter specificationis of an allowableRA and Dec

range,asthe matchedcatalogis sortedon thosefields.All queriesto the matchedcatalog

shouldspecifythe most restrictiveRA andDeclimits possible,for mostefficientretrieval

of the data.

Theoutput specificationfile defineswhichattribute columnsto passon from the query

and how to combinemultiple measurementsinto one. For example,the followingout-

put specificationwouldproducea tablecontainingthe followingfivecolumns:the object

ID, RA, and Dec from plate J442,and calibratedJ and g magnitudes derived from a

combination of all feature measurements for each object:

0bjectId/j442 _d

RA/j442 _d

Dec/j442 _d

MaE/C/J _d

Mag/h/g _d

To the right of the column/source specifiers are format codes, indicating how to print the

column value if the output is directed to a text file. For this output specification to result

in a valid query, the filter must have restricted its output to those objects detected in

plate J442 for which there is at least one g (CCD) measurement, since we are requesting

output from both these sources. The specification 14ag/h/g refers to the average (h) of all

calibrated g magnitudes measured for that object. The preceding specification asks for the

object's J magnitude not necessarily from plate J442, but from that particular feature that

was measured closest to the center (C) of its source catalog (and, therefore, presumably

the least susceptible to field effects).

Using the query program, the user can combine the data in the matched catalog in most

ways needed for subsequent scientific use. To facilitate the construction of the filter and

output specification files, we created an X-windows interface to the program (see Figure

10). Using either program, the user has the option of producing another Sybase table

or an ASCII text file. The former is of use if the user might wish to perform subsequent
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queriesof the resulting table using any of the available Sybase database management tools.

A Sybase table is also the most appropriate form for a catalog one might wish to make

available on-line, through the Astrophysical Data System, for example. An ASCII file, on

the other hand, though inefficient, is an almost universally accepted format for general

purpose or homemade analysis programs.

We also developed a similar query mechanism and graphical user interface for filtering

and outputting portions of any Sybase table, such as a plate or CCD features table, or even

an object table produced by the query mechanism. Using these programs, one can perform

all of the same basic filtering and output operations, but without the functionality related

to handling multiple entries per object. Again, the resulting tables may be produced in

either Sybase or ASCII format.

After the successive application of the tools described in this chapter, from creating

individual plate and CCD catalogs, to matched catalog construction, to the generation

of user-specified object catalogs, the user will have reduced the raw pixel data into a

form suitable for systematic study. Following the next chapter, in which we describe our

classification methods in more detail, we will present results derived from the application

of these SKICAT programs to actual DPOSS data.
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A Appendix- Database Definitions

Below is a description of the most commonly used database terms within the SKICAT

system:

A feature is the set of measurements (magnitude, surface brightness, position angle,

etc.) of a unique object contained in a catalog. For example, a star may be a feature

within a catalog, as might be a galaxy or a satellite trail detected on a plate.

A table is a collection of data organized by row and column, where each row has a value

(or space for a value) for every column in the table. For example, a list of galaxies may

be organized in the form of a table, with one row per galaxy (feature) and one column per

galaxy measurement. SKICAT tables are stored and manipulated using Sybase. Therefore,

all references to tables refer specifically to the Sybase data structures of the same name.

A catalog consists of a features table and a header table. These are data sets produced

by Autoplate and AutoCCD. A features table contains one row for each feature appearing

in the catalog. The header table contains information relevant to the entire catalog (image

source, date of creation, etc.) and is generally used for reference purposes.

An object is a unique image artifact or physical sky object (i.e., star, galaxy, etc.) to

which there may correspond multiple features within distinct catalogs. For example, the

object M87, which lies in the overlap of two plates, would appear as a feature within both

plates' catalogs.

A matched features table contains features from multiple, matched catalogs. Fea-

tures at the same RA and Dec position (within astrometric uncertainty) are considered to

be different measurements or features of the same object. They are assigned a common

object ID during the matching process.

A matched catalog consists of a matched features table and a table listing those

catalogs comprising it. New catalogs are added to it by matching each new feature with

existing matched features (objects). The user controls which subset of measurements to

include in the matched features table and also specifies parameters affecting the matching

algorithm. In a reverse operation, selected columns within catalog features tables may be
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updatedfrom their correspondingentriesin the matchedfeaturestable.

Objects tables areproducedby filtering and outputting selectedcolumnsof object

entriesfrom any individualcatalogor the matchedcatalog.They mightbe generatedfor

catalogcalibration,specializedscientificanalysis,or asdistributeddataproducts(suchas

the PNSC).Thesetablesmayalsobe queriedand manipulatedusingthe SKICAT table

manipulationtools.
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B Appendix - Plate Processing Details

B.1 Digitized POSS-II Scan Data Format

The plate pixel data, consisting of arbitrarily scaled photographic densities, are provided

by ST ScI as a single file, two bytes per pixel, on a single VMS backup saveset on exabyte

tape. For processing by SKICAT, the single pixel file is transferred to another exabyte as

23 VMS backup savesets, each containing 23 image 'blocks'. The scanned image is broken

into these more manageable image blocks, of at most 1024 x 1024 pixels, to facilitate

retrieval and processing.

The following additional files produced by ST ScI are also necessary for processing a

plate:

scan_name.gsh - Plate scan header file I
snap_name.hhh Snapshot image header file Isnap_name.hhd Snapshot image pixels

The scan header contains parameters, such as the plate name, band, and astrometric solu-

tion coefficients, which are eventually loaded into the plate catalog header. The 'snapshot'

image is a sparsely sampled (one pixel per ,,, 33 × 33) version of the plate scan, useful not

only as a reality check, but for determining the usable portion of the scan image. Figure

3 depicts such a snapshot.

One must analyze the snapshot image to determine the plate sky and saturation densi-

ties and the image boundaries. These parameters are listed in Table 1 The pixel positions

in the snap image should be multiplied by 32.914 to match the plate dimensions. The pixel

values must be multiplied by 1.5259 × 10 -4 to convert to properly scaled densities.

B.2 Running AutoPlate

AutoPlate is designed to automatically perform all levels of processing for the footprints in

all columns of all rows of a plate. However, if it becomes necessary to restart the script at

a particular stage of plate processing (due to, for example, a prior system failure), control

parameters supplied at run time can force it to begin at a specified level of the processing

of the footprint at a specified column of a specified row. Any subsection of a plate may be

processed or reprocessed with the same facility.
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The AutoPlatescript maybe invokedeitherdirectly from the C shellpromptor from

within the xautoplate graphicaluserinterfacedescribedin the SKICAT Users Manual

(see Figure 6). The parameters that control AutoPlate are specified in a file, the name of

which must be supplied as the sole command-llne parameter when AutoPlate is initiated.

The parameter specification file details the data to be processed, the initial processing

level, and the footprint row and column at which to begin and end processing. A detailed

description of the parameters in this file is described in an appendix within the SKICAT

Users Manual. It is automatically produced by a separate initialization program that is

run prior to plate processing.

In addition to the parameters file, the only additional inputs required by AutoPlate

(and referenced in the parameters file) are the file containing the plate density-to-intensity

transform coefficients and the plate header file provided by ST ScI. Assuming all the

necessary image blocks do not already reside on disk, the exabyte containing the raw pixel

data must also be loaded on the appropriate tape device.
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C Appendix- Processing CCD Images

C.1 Pre-processing

The construction of CCD catalogs is similar to the process of constructing plate catalogs,

although simpler. As with plate data, there are a number of preliminary steps before

an image is ready for processing. In particular, the CCD image should be reduced (i.e.,

debiased, flat-fielded, calibrated, etc.) according to standard astronomical procedures.

Methods and specific software for performing these tasks on DPOSS calibration sequences

obtained using the Palomar 60 inch telescope are described in the SKICAT Plate and CCD

Processing Cookbook.

After these standard CCD reduction tasks are performed, the image is nearly ready to

be run through the catalog processing script. The user must first run an initialization script

in order to create and load a parameters file containing header and control information

for subsequent processing. To the extent it is possible, this program loads the necessary

values from the image header itself. Otherwise, the user must enter the values, such as

image center RA/Dec, descriptive name, date of observation, and photometric calibration

coefficients manually.

C.2 AutoCCD processing

Like its sister AutoPlate, the AutoCCD script takes a parameter specification file as its

sole argument and, in turn, calls a collection of programs, primarily from FOCAS, to

construct a SKICAT catalog from the indicated CCD image. All of the same sky and object

attributes measured for plate images are measured for CCDs, using the same routines.

Unlike AutoPlate, there is not a corresponding X-Windows interface.

After initial object detection, measurement, and splitting, the script attempts to auto-

matically generate a list of stars with which to form the empirical PSF estimate. It tries

to do so by first looking for the stellar locus in a plot of intensity weighted first moment

radius (the FOCAS IR1 parameter) versus magnitude. After estimating the stellar IR1

parameter, AutoCCD uses it to create a filtered catalog of candidate stars. It then feeds

this catalog to a FOCAS script which iteratively prunes the list until some maximum level
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of dispersionin IR1 is achieved.The script thenallowsthe userto view and prunethe

candidatestarsbeforeactuallyformingthetemplate.

Next, the script runs the FOCAS'resolution'routine,whichmeasuresthe samescale

and fractionattributesasdescribedin the AutoPlatesectionabove,andbasedupon these

values, applies a simple set of default rules for classifying objects as stars, fuzzy stars,

galaxies, or artifacts. The script then allows the user to review the image in order to

facilitate changes to the FOCAS-provided object classifications. If a good PSF template

was formed and the data are of sufficiently high resolution and quality, FOCAS will do an

excellent job of classifying the objects, generally beyond the detection limits of DPOSS.

Even better classifications are no doubt achievable with the CCD data by applying machine

learning to derive more complex rules, and SKICAT was designed to facilitate just that.

However, we found the quality of the standard FOCAS classifications more than sufficient

for our present purposes: to facilitate photometric calibration and construction of training

sets for plate object classification.

Once the construction of the FOCAS catalog is complete, meaning all attributes have

been measured and classifications assigned, a final routine transforms the FOCAS format

catalog into a SKICAT catalog. The latter is comprised of the CCD header, which contains

information from both the FOCAS catalog header and the AutoCCD parameters file, and

a features table of the exact same format as that of a plate catalog.

C.3 Post-processing

C.3.1 Astrometric transformation

One has three options for setting the RA,Dec coordinates of the objects in a CCD catalog,

depending on what, if any, other catalogs covering the same field currently exist in the SKI-

CAT database. Ideally a plate catalog covering the CCD field has already been created,

in which case a SKICAT tool performs the following operations. Using the approximate

position of the CCD frame saved in the CCD's header file, the program automatically

searches the relevant portion of the plate catalog and tries to match the two. The pro-

gram automatically restricts the search to objects classified as stars within an intermediate

36



magnituderange,asoneexpectstheseobjectsto providethemost consistentand precise

astrometry.It thenallowsthe userto interact[velyviewand correctthe matchesit finds

(seeFigure 8). Onecan acceptor rejectany_f the suggestedmatchesbeforeallowing

the programto solvefor the astrometricsolutign. First, the programfinds the transfor-

mation matrix from CCD to plate standard coordinates. Then, the program applies the

plate's standard to celestial coordinate transformation polynomials to compute RA and

Decs. This same interface would be useful for scientific projects involving the association

of astrometric coordinates with deep CCD images not even used for calibration.

If an overlapping plate catalog is not available, but a CCD catalog is, the user may

execute an analogous script which determines the astrometric solution using the other

CCD's celestial coordinates. In this case, it e_de_es a single matrix expressing shift, shear,

scale, and rotation for converting directly fromX,Y to RA,Dec coordinates.

As a final resort, the RA and Dec values 0Ira CCD catalog may be derived by assuming

the image is rotated counterclockwise relative to nominal (i.e., north to the top and east

to the left) an amount indicated by the header_s position angle column, and centered on

the approximate position saved in the header_This procedure should only be used in the

event no other SKICAT catalog exists coverin_ the same field of view. Ultimately, all

CCD catalogs should be astrometrically calibrated using the plate catalog to which they

most directly apply. This will minimize matching error when the catalogs are eventually

matched.

C.3.2 CCD registration

At this point, the catalog is ready for registration into the SKICAT catalog management

system. As with plate catalogs, a catalog must be registered in order to be matched with

other catalogs or saved off-line in a manner such that it can be reloaded by SKICAT.

C.3.3 Photometric calibration

As with the astrometric assignment of CCD catalogs, the user has a choice of photometric

calibration methods, depending on what catalogs are already loaded in the system. One
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methodperformsthe calibrationassuminga defaultcolorterm, meaninga user-specified

coloris appliedwhenperformingtheinstrumentalto calibratedmagnitudetransformation

givenby 2. Independentdefaultcolorsareassumedfor stellarandnon-steUarobjectsand

arespecifiedwithin theCCDheaderfile. This routinealsousesheadercolumns containing

the magnitude zero point offset term (A), extinction term (B), color term (C), exposure

time (t), and alrmass (sec(z)) parameters to derive the calibrated magnitude (m) saved in

the CCD features table. These parameters are used in the relation:

m = rainst + 2.5 log(t) + A + Bsec(z) + C(g - r), (2)

where minst is the measured instrumental magnitude and (g - r) is the default color term

applied. Any of the four instrumental magnitudes available in the CCD features table may

be substituted for minst

Once red and blue catalogs of the same CCD field have been created and matched

together within SKICAT, one may calibrate the magnitudes of each using actual color

information. One has three options, depending on whether one wants to update either

the red or blue catalog, or both. One command takes the names of corresponding blue

and red CCD catalogs and updates the magnitudes of both by simultaneously solving the

relation 2 for objects measured in both the blue and the red. Unmatched objects are not

affected. Alternative programs exist in the event that one only wants to update one of the

two catalogs using this method.
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D Appendix - Matched Catalog Data Structure

The primary data structure comprising the matched catalog is the MatchedFeatures ta-

ble, which contains one row for each feature added from each constituent catalog. The

MatchedFeatures table contains a user-defined subset of the columns from the catalog fea-

tures tables. Features are linked together by an ObjectId column which indicates which

object each feature is associated with (see Figure 9). A MatchedCatalogs table indicates

those catalogs which have been added to the matched catalog. A third table, named

MatchedCount, maintains a running count of the number of features associated with each

ObjectId and is maintained simply for improved query performance.

The user can modify the parameters which control the matching process by setting

parameters in the MatchProc table. The list of columns from the catalog features table

which are included in the matched catalog is maintained in the MatchColumns table. The

parameters which control the process of adding a catalog to the matched catalog (located

in the MatchProc table) are:

NextObjectId: the next unused ObjectId used to uniquely identify objects.

MaxObjectDistance: the maximum allowable distance between two matched features

in arcsec.

XSeg: the number of segments (in X dimension) to break the catalog into for matching.

YSeg: the number of segments (in Y dimension) to break the catalog into for matching.

QSigmaClip: The quartile-sigma clipping threshold for computing offset means and stan-

dard deviations.

SearchNumSig: The search radius applied for second and subsequent iterations, in terms

of measured offset standard deviations.

ErrMax: the maximum Chi-squared positioning error in X and Y for a match to be

accepted.
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ConvergeMode: 0 for automatic convergence, 1 for manual convergence.

ConvergeScale: the maximum allowable average match difference in X or Y, in terms of

estimated error in the mean offset, for convergence.

MaxNumPasses: the maximum number of matching passes for auto convergence, exact

number of passes for manual convergence.
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Figure1: An overviewof the SKICATsystem.

Figure2: A platescanis saved as 23 Vax VMS savesets (rows) of 23 image 'blocks' each.

Each image block consists of 1024 × 1024 pixels, except at the right and top edges, where
one dimension is only 512.

Figure 3: ST ScI produces a 'snapshot' image for every plate scan. It contains one sample

pixel per every ,,- 33 × 33) in the full scan. The snapshot may be used to quickly and easily
check general qualities of the scan.

Figure 4: A plate scan is analyzed as a set of 13 x 13 overlapping footprint images of 20482

pixels each. Not only is this approach computationally convenient, but it provides greater
sensitivity to position-dependent plate effects. It also facilitates quality control via the

systematic comparison of the overlap regions.

Figure 5: Given the measured image blur (R2), we establish the appropriate factor by

which to scale the measured sky sigma to approximate that of an unblurred version of the

same image.

Figure 6: The X-Windows catalog construction interface within SKICAT.

Figure 7: The regions surrounding bright stars must be avoided when analyzing the plate

catalogs generated by SKICAT, as it typically splits these objects into dozens, or even

hundreds, of spurious artifacts.

Figure 8: SKICAT automatically searches a plate catalog for the region overlapping a CCD

frame. The program returns with a list of suggested matches and displays the overlapping

portions of the two catalogs in graphical form, as shown above (plate to the left, CCD to

the right). The displayed coordinates are those of the plate scan. On a workstation, the

matched objects are color coded as well as numbered, allowing the user to easily identify
and remove spurious matches from the list.

Figure 9: An overview of the SKICAT object matching process.

Figure 10: The X-Windows catalog query interface within SKICAT.
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Label Description

xmin

xmax

ymin

ymax
spotxmln

spotymax

sky
saturation
I

Minimum useable X coordinate in plate image

Maximum useable X coordinate

Minimum useable Y coordinate

Maximum useable Y coordinate

Beginning of spots boundary in X

End of spots boundary in Y

Density of the sky at plate center

Saturation density of the plate

Table 1:



Label Description
XC

YC

MCore

MAper
Mlso

MTot

SLi

SSBr

Ispht

Area

TArea

XAvg

YAvg
ICX

ICY

IXX

IXY

IYY

IR1

IR3

IR4

CX

CY

XX

XY

YY

R1

x position (center of maximum 3 x 3 pixel integrated intensity)

y position
core magnitude (from maximum 3 × 3 pixel integrated intensity)

aperture magnitude (from integrated intensity within aperture)

isophotal magnitude (from integrated intensity within detection

isophote)

total magnitude (from integrated intensity within 'grown' isophote)

sigma of sky subtracted integrated intensity (luminosity) within

detection isophote

local sky sigma

isophote brightness (average intensity along detection isophote)

isophotal area (area within detection isophote)

total area (area within 'grown' isophote)

average x width

average y width

x intensity weighted centroid

y intensity weighted centroid

xx intensity weighted second moment

xy intensity weighted second moment

yy intensity weighted second moment

intensity weighted first moment radius

intensity weighted third moment radius

intensity weighted fourth moment radius

x unweighted centroid

y unweighted centroid

xx unweighted second moment

xy unweighted second moment

yy unweighted second moment

unweighted first moment radius

Table 2:
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POSS-II Plate J380 (L2n2:4 m + 35 °)
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Abstract

We describe the automated object classification method implemented in the Sky Image

Cataloging and Analysis Tool (SKICAT) and applied to the Digitized Second Palomar

Observatory Sky Survey (DPOSS). This classification technique was designed with two

purposes in mind: first, to classify objects in DPOSS to the faintest limits of the data;

second, to fully generalize to future classification efforts, including anything from classifying

galaxies by morphology, to improving the existing DPOSS star/galaxy classifiers once a

larger volume of data are in hand. To optimize the identification of stars and galaxies

in J and F band DPOSS scans, we determined a set of eight highly informative object

attributes. In the eight-dimensional space defined by these attributes, we found like objects

to be distributed relatively uniformly within and between plates. To infer the rules for

distinguishing objects in this, but possibly any other, high-dimensionai parameter space,

we utilize a machine learning technique known as decision tree induction. Such induction

algorithms are able to determine near-optimal classification rules simply by training on a set

of example objects. We used high quality CCD images to determine accurate classifications

for those examples in the training set too faint for reliable classification by examining the

plate scans by eye. Our initial results obtained from a set of four DPOSS fields indicate

that we achieve 90% completeness and 10% contamination in our galaxy catalogs down to

a magnitude limit of ,,_ 19.6" in r and 20.5 m in g, within F and J plates respectively, or an

equivalent Bj of nearly 21.0 m. This represents a 0.5 'n - 1.0 TM improvement over results from

previous digitized Schmidt plate surveys using comparable plate material. _re have also

begun applying methods of unsupervised classification to the DPOSS catalogs, allowing

the data, rather than the scientist, to suggest the relevant and distinct classes within the

sample. Our initial results from these experiments suggest the scientific promise of such

machine discovery methods in astronomy.

keywords: classification, sky surveys



1 Introduction

The first step in analyzing any imaging sky survey is to identify, measure, and catalog all

of the detected objects into their respective classes. Once the objects have been measured

and classified, further scientific analysis may proceed.

The accuracy of star/galaxy separation generally determines the effective limiting mag-

nitude, in terms of scientific usefulness, of imaging surveys. This limit is, in very many

respects, more important than the object detection limit in terms of its impact on the va-

riety of programs for which the data may be used. For example, in order to effectively use

the data to compare against models of star or galaxy counts or colors, measure the angular

correlation function of galaxies, or search for high redshift quasars, accurate star/galaxy

classification is required at the level of approximately 90%. At the faint end, every addi-

tional magnitude to which one can extend this accuracy limit buys one on order of two

to three times more classified objects in the catalog. Given the enormous resources put

into obtaining the survey data in the first place, it makes sense to fully investigate the

very latest technology when approachiag the task of object classification, in the hope of

squeezing every last bit of scientifically useful information from the survey. This was our

motivation when designing and implementing the classification methods described in this

paper, which are currently being applied to the digitized scans of the Second Palomar

Observatory Sky Survey (POSS-II).

POSS-II (Reid et al. 1991) is more than 60% complete as of August, 1994, and will

eventually cover 894 fields spaced 5° apart in three passbands: blue (IIIa-J + GG 395),

red (IIIa-F + RG610), and near-infrared (IV-N + RG9). The typical limiting magnitudes

for point sources in the corresponding J, F, and N bands are 22.5 'n, 21.5 'n, and 19.5'*,

respectively. While the photographic survey is still under way, ST ScI and Caltech have

begun a collaborative effort to digitize the complete set of plates (Djorgovski et al. 1992;

Lasker et al. 1992; Reid and Djorgovski 1993). So far, only a subset of the J, F, and

N plates have been scanned and processed. Both the photographic survey and the plate

scanning are estimated to be > 90% complete circa 1997. The resulting data set, the

3



Palomar-STScIDigital Sky Survey(DPOSS),will consistof ,-_ 3 TB of pixel data: ,,, 1

GB/plate, with 1 arcsec pixels, 2 bytes/pixel, 203402 pixels/plate, for all survey fields in

all three colors. In conjunction with the plate survey, we are also conducting an intensive

program of CCD calibrations using the Palomar 60-inch telescope, using the Gunn-Thuan

gri bands. These CCD images serve both for magnitude zero-point calibration and object

classification purposes. The plate scans, when complete, will be the highest quality set of

digital images covering the entire northern sky produced to date.

The first scientific results obtained using DPOSS, and making use of the classification

methods described herein, are measures of blue and red galaxy counts in four POSS-II fields

near the North Galactic Pole (Weir, Djorgovski, and Fayyad 1994). Several additional

programs, including a high-redshiff quasar search and measures of galaxy-galaxy angular

correlations, are in progress (Weir et al. 1994a).

In order to make most efficient use of DPOSS, and to generally facilitate its scien-

tific exploitation, Caltech Astronomy and the JPL Artificial Intelligence Group have been

engaged in a collaborative effort to integrate state-of-the-art computing methods for appli-

cation to DPOSS. The result of our joint effort is the Sky Image Cataloging and Analysis

Tool (SKICAT), a suite of programs designed to facilitate the maintenance and analysis of

astronomical surveys comprised of multiple, overlapping images. The classification tech-

nology described in this paper was developed as a part of this effort and is implemented

within SKICAT (Weir et al. 1994b).

Historical methods for classifying image features would preclude the identification of

the majority of objects in a DPOSS image, since these objects are too faint for traditional

recognition algorithms, or even object-by-object classification by eye. A principal goal

of SKICAT was to provide an effective, objective, repeatable, and examinable basis for

classifying sky objects at levels beyond the limits of previously existing technology. Of

course, due to statistical fluctuations of the data, one may never construct a classifier that

will be 100% accurate. One may, nonetheless, aim for the highest statistical accuracy

achievable to the greatest possible depth.

A particular difficulty in classifying DPOSS objects is that the scan images vary sig-



nificantly in termsof imagequality (e.g., backgroundnoise,point spreadfunction shape,

etc.) both within and acrossplateboundaries.This createdan importantdemandon the

classificationmethodto be ableto copewith this variationand produceconsistentresults

throughoutthe survey.

Thetwo essentialstepsin performingautomatedobjectclassificationare to definethe

spaceof discriminatingattributes characterizingeachobject, thendeterminea meansof

distinguishingobjectswithin that space.Thefirst stepis key,asit determinesuponwhat

informationanyclassificationwill bebased.Weconcentrateda significantamountof effort

in deriving a set of object attributeswhicheffectivelyremovethe intra- and inter-plate

variationsdescribedabove.The secondstepis likewisevery important, asthereareany

numberof ways,somemuchmorepowerfulthanothers,of designingrulesthat dividethe

parametersspaceinto regionsof like objects.

The approachwechosefor this secondstepwasonedevelopedin the field of machine

learning,namelyusingdecisiontree induction algorithms. Thesemethodsare able to

automaticallyinduceclassificationrulesbasedsimply uponuser-suppUedexamples.This

approachnot onlyprovideduswith theveryeffectivestar/galaxyclassifiersthat alreadyare

beingusedto producehigh-qualityDPOSScatalogs,but it will easilyallow future users

to re-train specializedclassifiers(e.g., to identify galaxy morphology),or redo existing

star/galaxy classificationsasmoredata becomeavailableand/or attribute measurement

technologyimproves.

1.1 Historical approaches

Theproblemof automaticobjectclassificationhasbeenaddressedfor at leasttwodecades,

with a varietyof proposedsolutions.Themostbasicapproachis to plot onemeasuredat-

tribute versusanotheranddrawalinewithin that spacebestseparatingstarsfrom galaxies.

Typically the chosenattributesaremagnitudeand somemeasureof object 'peakedness',

suchaspeakintensity,isophotalarea,or intensityweightedfirst momentradius.Because

in that spacepoint sourcesaregenerallydistributedalongafairly well-definedstellarlocus,

or ridge(see,e.g., Figure 3), such a discriminant function tends to be reasonably accurate



downto moderatelyfaint magnitudes.Theshortfallsof this approach are that defining the

classifier is very labor-intensive as well as subjective, and at faint levels, stars and galaxies

quickly blur together around the locus.

The next level of sophistication is to perform star/galaxy separation in a space defined

by some non-linear combination of parameters, rather than raw measurements. For exam-

ple, simply by plotting the logarithm of isophotal area [log(Area)] vs. magnitude, instead

of just object area, the stellar locus becomes more linear, making a separator much easier

to define and generally more accurate. For classifying objects from COSMOS digitized

plate scans, Heydon-Dumbleton, Collins, and MacGillivray (1989) found it optimal to dis-

criminate using one of three different paJrwise plots depending on an object's magnitude.

The three parameters they plotted versus magnitude were: G, a measure of how effectively

an image fills the ellipse fitted to its major and minor axes, for bright objects; log(Area),

for intermediate objects; and a derived parameter, S, which effectively measures the scale

of a best fit Gaussian to an object's light distribution, for the faintest objects.

Heydon-Dumbleton, Collins, and MacGillivray (1989)also improved upon the standard

method by making the choice of discriminant line more objective. They measured the

statistical distribution of objects around the stellar locus as a function of magnitude,

setting the star/galaxy separation line some number of standard deviations above the

locus mean.

Picard (1991), in his analysis of COSMOS scans of POSS-II F plates, similarly mea-

sured the mean and width of the stellar locus in S vs. magnitude space, defining a new

parameter, ¢, corresponding to an object's distance from the locus, normalized by the

width of the locus at that magnitude. He binned all the measurements for a given plate

and computed a value, ¢c_,t, corresponding to three times the estimated width of the nor-

malized stellar locus. He would then classify all objects with ¢ less than ¢_t as stars, the

rest as galaxies. Using this approach, he estimated that he was able to achieve on average

90% completion (fraction of all galaxies classified as such) and 10% contamination (fraction

of non-galaxy objects classified as galaxies) in his galaxy catalog down to a magnitude of

19.0 m in r.



The APM group(Maddoxet al. 1990) took a slightly different approach to classifying

objects from their scans of J plates from the Southern Schmidt survey. Rather than mea-

suring the distance from the stellar locus in the space of one parameter vs. magnitude,

they used a metric involving ten different parameters: peak density, radius of gyration, and

image area above each of eight surface brightness levels. Two additional parameters were

used to help them distinguish blended objects from galaxies, as no deblending algorithm

was applied by the APM real-time software in the course of processing. Using this ap-

proach, APM reported a classification accuracy comparable to Picard's at a Bj magnitude

of 20.0 m.

A far different method for classifying objects from plate scans was pioneered by Sebok

(1979) in his Ph.D. thesis at Caltech. He introduced the concept of Bayesian classification

to the problem, estimating the most probable classification of each object based upon its

fit to a set of models. While this approach was effective, it was never widely applied to

Schmidt plate surveys subsequently.

Sebok's classification method preceded the similar approach devised by Valdes and im-

plemented in modern versions of FOCAS (Valdes 1982). Valdes also applied a technique

premised on Bayesian probability theory, but more significantly, he introduced a measure-

ment procedure that results in extremely discriminating object attributes. By selecting

a number of objects in an image that are 'sure-thing' stars, FOCAS adds the rasters of

the central pixels of these objects to form an empirical estimate of the point spread func-

tion (PSF) for that image. Using the 'resolution' routine, FOCAS then fits a model to

each object consisting of a pure PSF component and a blurred version of the same. The

best-fitting fraction of blurred component and its scale are the two attributes resolution

measures and uses for performing object classification. These attributes have never been

used in large scale digitized plate surveys to date because computing technology prevented

the repeated access to the pixel data, which this technique requires.

FOCAS provides a default set of rules specifying to which class different portions of

fraction vs. scale space correspond. Because the distribution of objects in the space of

these attributes tends to be relatively invariant from image to image (PSF variations are



effectivelytakeninto accountby thefitting process),thedefaultrulesarefoundto provide

excellentclassificationaccuracydownto fairly faint levelsfor awidevarietyof images.The

userhasthe option of changingtheseclassificationrules,but FOCASdoesnot providea

wayof allowingfor moreattributes in the rules,or a systematicway for determininga

new,optimal setof rulesfor a particulartypeof image.

1.2 The machine learning approach

Drawingupon thesepreviousefforts,wechoseto measureand calculatethoseobject at-

tributes foundto providethe beststar/galaxydiscrimination.However,unlikemostpre-

viousapproaches,wechoseto apply modernmethodsfrom the field of machinelearning

to determinethe optimal discriminantfunctions,or set of classificationrules,within the

multi-dimensionalspaceof thesemeasurements.The goalwhenapplyingthesemethods

is to provideenoughexamplesof accurateclassificationsto the algorithm to allow it to

infer the rulesfor distinguishingobjectsin that space.An important advantageof this

approachis that onecantypically feedarelativelylargenumberof input parametersto the

algorithm,allowingit to determineclassificationrulesmorecomplexthan thosetypically

devisedby humans,generallyas a resultof examiningpairwiseplotsof attributes. The

extra degreesof freedomprovidedby learningin multi-dimensionalparameterspaceoften

leadto substantiallymoreaccurateclassifications.In addition,the rulesare formedin an

objective,repeatablefashion.

Othershavealsobegunexploringthe useof new machinelearningmethodsfor the

purposeof object classification,perhapsmostnotably the APS groupin Minnesota,who

havedigitized the platesof the original POSS(Odewahnet al. 1992). They applied

artificial neural networks to the task of automatically inducing a set of classification rules

for objects in their catalog. We, too, experimented with neural nets; however, for reasons

discussed below, we chose to use a method involving decision trees, based on the work of

Fayyad (1991), for creating the production-line classifier implemented within SKICAT and

used on DPOSS.



2 Classifier Induction

For a detailed discussion of decision trees and associated methods of machine learning, we

refer the reader to Fayyad (1991) and Fayyad and Irani (1992). Below we include a brief

discussion and history of these methods, in particular those we utilize within SKICAT, in

addition to a comparison of this approach with neural networks.

2.1 Decision trees

A particularly efficient method for extracting rules from data is to generate a decision tree

(Quinlan 1986). A decision tree consists of nodes that represent tests on attribute values.

The outgoing branches of a node correspond to all the possible outcomes of the test at

the node, thus partitioning the examples at a node along the branches. For example, as

illustrated in Figure 1, at the top-most (root) node, the tree may branch left or right

depending on whether the object has log(Area) less than or greater than Ao. In turn,

either of these branches may lead to a node that conditions on the same attribute, a

different one, or any combination of the same [e.g., "branch left if (mag < mo) and (¢ >

¢o)"]. The final nodes in the tree, the leaves, would correspond to an actual classification:

star, galaxy, artifact, etc.

In Figure 2 we illustrate a portion of a much larger actual decision tree generated by

the O-Btree algorithm (described below) for performing star/galaxy classification. The

interval appearing above each node indicates the range in value of the attribute specified

in the node above that an object must meet for it to pass along that branch. The dark

branches lead to actual classifications. A full path from the root to any particular leaf

corresponds to a single classification rule. The number in parentheses within each leaf

indicates the number of training examples classified correctly by that rule.

A well-known algorithm for generating decision trees is Quinlan's ID3 (Quinlan 1986)

with extended versions called C4 (Quinlan 1990). ID3 starts with all the training examples

at the root node of the tree. An attribute is selected to partition the data. For each value

of the attribute, a branch is created and the corresponding subset of examples that have

the attribute value specified by the branch are moved to the newly created child node. The
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algorithmis appliedrecursivelyto eachchild nodeuntil either all examplesat a nodeare

of oneclass,or all theexamplesat that nodehavethe samevaluesfor all the attributes.

Everyleafin thedecisiontreerepresentsa classificationrule. Notethat the criticaldecision

in sucha top-downdecisiontreegenerationalgorithmis the choiceof attribute at a node.

Attribute selectionin ID3 andC4is basedon minimizingan informationentropymeasure

appliedto theexamplesat anode.Themeasurefavorsattributesthat resultin partitioning

the data into subsetsthat havelow classentropy.A subsetof datahaslow classentropy

whenthe majority of examplesin it belongto a singleclass.Fora detaileddiscussionof

the informationentropyselectioncriterionseeQuinlan(1986),Fayyad(1991),andFayyad

andIrani (1992).

2.1.1 The GID3* and O-Btree algorithms

The attribute selection criterion clearly determines whether a "good" or "bad" tree is

generated by a greedy algorithm (see Fayyad and Irani 1990 and Fayyad 1991 for the details

of what we formally mean by one decision tree being better than another). Since making

the optimal attribute choice is computationally infeasible, ID3 utilizes a heuristic criterion

which favors the attribute that results in the partition having the least information entropy

with respect to the classes. There are weaknesses inherent in algorithms like ID3/C4 due

to the fact that, for discrete attributes, a branch is created for each value of the attribute

chosen for branching. This overbranching is problematic since in general it may be the case

that only a subset of values of an attribute are of relevance to the classification task while

the rest of the values may not have any special predictive value for the classes. The GID3*

algorithm was designed mainly to overcome this problem, generalizing the ID3 algorithm

so that it does not necessarily branch on each value of the chosen attribute. GID3* can

branch on arbitrary individual values of an attribute and "lump" the rest of the values in a

single default branch. Unlike the other branches of the tree which represent a single value,

the default branch represents a subset of values of an attribute. Unnecessary subdivision

of the data may thus be reduced. See Fayyad (1991) for more details and for empirical

evidence of improvement.
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The O-Btreealgorithm(Fayyadand Irani 1992)wasdesignedto overcomeproblems

with the informationentropyselectionmeasureitself. O-Btreecreatesstrictly binarytrees

and utilizesa measurefrom a differentfamily of measuresthat detect classseparation

rather than classimpurity. Information entropy is a memberof the classof impurity

measures.O-Btreeemploysanorthogonalitymeasurerather than entropyfor branching.

For detailson problemswith entropymeasuresand empiricalevaluationof O-Btree,the

readeris referredto Fayyad(1991)andFayyadandIrani (1992).Both O-BtreeandGID3*

differ fromID3 andC4 in oneadditionalaspect:thediscretizationalgorithmusedat each

node to discretizecontinuous-valuedattributes. WhereasID3 and C4 utilize a binary

intervaldiscretizationalgorithm,weutilize a generalizedversionof that algorithmwhich

derivesmultiple intervalsrather thanstrictly two. Fordetailsandempiricaltestsshowing

that this algorithmdoesindeedproducebetter trees,seeFayyad(1991)and Fayyadand

Irani (1993). We havefound that this capability improvesperformanceconsiderablyin

severaldomains.

2.2 The RULER system

Therearelimitations to decisiontreegenerationalgorithmsthat derivefrom theinherent

fact that the classificationrulesthey produceoriginatefrom a singletree. This fact was

recognizedby practitionersearly on (Quinlan1986). The basicproblemis that in even

a goodtree, therearealwaysleavesthat areoverspecializedor predict the wrongclass.

For example,if thereareanymeasurementerrorsin the attributes, the decisiontreewill

tend to fit to the noiseand, hence,not generalizewell to data that areout of sample.

Theveryreasonthat makesdecisiontreegenerationefficient(the fact that datais quickly

partitionedinto eversmallersubsets)is alsothereasonwhyoverspecializationor incorrect

classificationoccurs. It is our philosophythat oncewehavegood,efficientdecisiontree

generators,they can be usedto generatemultiple trees,and from these,only the best

rulesin eacharekept. To implementthis strategy,the algorithmRULERwasdeveloped

(Fayyadet al. 1992).

In multiple passes, RULER partitions a training set randomly into a training subset

11



andtestsubset.A decisiontreeisgeneratedfromthetrainingsetandits rulesaretestedon

the correspondingtest set.UsingFisher'sexacttest (Finneyet al. 1963), the exact hyper-

geometric distribution, RULER evaluates each condition in a given rule's preconditions for

relevance to the class predicted by the rule. It computes the probability that the condition

is correlated with the class by chance 1. If this probability is higher than a small threshold

(say 0.01), the condition is deemed irrelevant and is pruned. In addition, RULER also

measures the merit of the entire rule by applying the test to the entire precondition as a

unit. This process serves as a filter which passes only robust, general, and correct _'ules.

By gathering a large number of rules through iterating on randomly subsampled train-

ing sets, RULER builds a large rule base of robust rules that collectively cover the entire

original data set of examples (i.e., every example is classified by a rule). A greedy covering

algorithm is then employed to select a minimal subset of rules that covers the examples.

The set is minimal in the sense that no rule could be removed without losing complete

coverage of the original training set. Using RULER, we can typically produce a robust

set of rules that has fewer rules than any of the original decision trees used to create it,

and that generalizes better to out-of-sample data. The fact that decision tree algorithms

constitute a fast and efficient method for generating a set of rules allows us to generate

many trees without requiring extensive amounts of time and computation.

We implemented the RULER algorithm, in conjunction with GID3* and O-Btree,

within SKICAT for the purpose of inducing classification rules by example, and it was

used to produce the particular star/galaxy classifiers described subsequently. Throughout

this paper, we generally refer to our technique as decision tree induction and the rules

as decision trees. We simply note that in practice we are actually referring to the use of

decision trees in conjunction with the RULER tree pruning and combining algorithm.

2.3 Decision trees vs. neural nets

In order to compare against other learning algorithms, and to preclude the possibility that a

decision tree based approach is imposing a priori limitations on the achievable classification

1The Chi-square test is actually an approximation to Fisher's exact test when the number of test
examples is large. We use Fisher's exact test because it is robust for both small and large data sets.
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levels,we testedseveralneuralnetworkalgorithmsfor comparison.The resultsindicate

that neural netsachievesimilar performanceas decisiontrees. The learningalgorithms

wetestedweretraditional backpropagation,conjugategradientoptimization,andvariable

metric optimizationof a two-layerperceptron(seeHertz, Krogh,and Palmer1991for an

excellentintroductionto perceptronsandneuralmethodsof computation).Thelatter two

aretrainingalgorithmsthat work in batchmodeandusestandardnumericaloptimization

techniquesin changingthe networkweights.Their main advantageoverbackpropagation

is the significantspeed-upin training time.

The resultsof our comparisonbetweentheseapproachesand decisiontreescanbe

summarizedasfollows. The performanceof the neural networkswasa fairly unstable

function of the randominitial networkweightschosenprior to training and produced

accuracylevelson a sampletest set of data varyingbetween30%(no convergence)and

95%,comparedwith a 94%accuracylevelfor a decisiontreeclassifier.The mostcommon

rangeof accuracyaveragedbetween76% and 84%. To achieve these levels of accuracy,

we had to perform multiple trials, each time varying the number of internal nodes in

the hidden layer, the initial network weight settings, and the learning rate constant for

backpropagation.

Upon examining the results of this empirical study, we concluded that the neural net

approach did not offer any clear advantages over the decision tree based learning algo-

rithms. Although neural networks, with extensive training and several training restarts

with different initial weights to avoid local minima, could match the performance of the

decision tree classifier, the decision tree approach still holds several major advantages. For

one, the tree is more easily interpreted than the weights in a neural network (although,

admittedly, a list of 20 rules that condition on up to eight parameters is not entirely trans-

parent either). More importantly, the learning algorithms we employ do not require the

specification of parameters such as the size of the neural net or the number of hidden

layers, nor do they call for random trials with different initial weight settings. There are,

in fact, very few free parameters. This makes the decision tree algorithm much easier to

implement as a generic tool within SKICAT. Also, the required training time is orders
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of magnitudefasterthan the training time requiredfor a neural networkprogram(i.e.,

secondsrather than dozensof minutesin somecases).
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3 Classification Attributes

In classification learning, the choice of attributes used to define examples is by far the

single most important factor determining the success or failure of the learning algorithm.

The attributes we use for classification are computed through a combination of image

processing and statistical measurement techniques. While they are not expected to be the

final advancement in this area, we did find them to provide the most discriminating and

uniform characterization of objects detected in DPOSS of any other set of attributes we

have encountered. This section provides a detailed description of these attributes and how

they are computed.

3.1 Base-level attributes

The eight attributes we use in object classification include a compendium of measures

found to be most useful and discriminating in previous surveys. They include:

MTot - the FOCAS total instrumental magnitude;

MCore - the core magnitude, measured from the brightest 3 × 3 pixel region in the object;

log(Area) - the log of the isophotal area of the object;

Ellip - the ellipticity;

IR1 - the intensity weighted first moment radius:

IR1 - _k ikrk
_k ik '

where i_ is the intensity of pixel k and rk is its distance from the object's centroid;

S - the parameter defined by Heydon-Dumbleton, Collins, and MacGillivray (1989) and

used by Picard (1991), which is a function of object area (a), core intensity (lco,.e,

the sum of the central 3 × 3 pixels), and the average intensity along the detection

isophote (p):

a
S=

log[lcore/(9 × p)]"
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WechoseFOCAStotal magnitudesfor our standardbrightnessmeasurefor its decreased

sensitivityto the surfacebrightnessthresholdrelativeto apertureor isophotalmagnitudes

(seeWeir, Djorgovski,and Fayyad1994).Theotherattributesmeasurethe object'ssym-

metryor compactnessin onewayor another.FOCASmeasuresthe twolisted magnitudes

and IR1 directly,while the other threeareeasilycomputedfrom actual measurements.

We testedthe useof a few additionalobject parameters,suchasadditional imagemo-

ments,but foundthat theycontributedlittle additionaldiscriminatorypowerdueto their

highcorrelationwith oneor moreof theseparameters.Thereis alwaysthepossibilitythat

future researcherswill find that someunconsideredparameterhelpsresult in significantly

improvedclassifications,andthe machinelearningsoftwareis fully capableof incorporat-

ing additionalnewparametersasthey arediscovered.For now,however,we foundthat

this list is sufficient.

Like previousresearchers(e.g.,Valdes1982;Heydon-Dumbleton,Collins, and Mac-

Gillivray 1989;Picard 1991), we quickly determined that the distribution of these base-

level attributes does not exhibit the required invariance between different regions of a single

plate, much less across plates. This was exhibited by the low out-of-sample accuracy of

the classifiers we produced by training on these attributes alone. Their variability is also

clearly evident when one looks at the distribution of these parameters across or within

plates. For example, in Figure 3, we plot the distribution of log(Area) vs. MTot for two

20482 pixel sections of plates J380 and J442. We analyze each plate in image sections of

this size (which we call footprints) to help account for variations in image quality across

the plate (see Weir et al. 1994b for a full discussion of our plate reduction procedure).

Note that the stellar loci for these two footprints are nonlinear and do not overlay one

another. The implication is that a classifier optimized for one of the images would not

only be difficult to construct due to the nonlinearity of the stellar locus, but it would

certainly be less than optimal for the other image.

Raw measurements of object shape are inherently sensitive to the local background sky

level, seeing, and the pixel blurring induced by the scanning process. We therefore expect

these measurements to vary from plate to plate and even footprint to footprint. For any
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learningalgorithmto beableto producerobust classifiersconsistentacrossa largesurvey

area,differentattributesareclearlyrequired.

3.2 Derived attributes

As wediscussedin Section1,theresolutionroutineofValdes(1982)providestwoextremely

powerfulclassificationparametersthat, by construction,arevery uniformly distributed

from imageto image. In fact, a preliminarystudy by Weir and Picard(1991)indicated

the significantbenefitsof usingthe FOCASapproachto object classificationondigitized

Schmidtplates. They foundthat usingthe PSF-fitting algorithm,onecould extendthe

limiting magnitudeof classifiedSchmidtplate catalogsnearly a full magnitudebeyond

previouslimits achievedusinghistoricalapproaches.

An essentialtask in employingthe resolutiontechnique,however,is to establishan

accurateestimateof the PSF for a given image. Only after this is obtained can the

resolutionscaleandfraction parametersbe measured.The problem,therefore,naturally

breaksupinto twoseparatesteps:(1)starselection,theprocessof automaticallyderivinga

list of candidatestarsfor generatinganempiricalPSFtemplate;and(2) final classification,

in whichthe resolutionparameters,possiblyalongwith others,areusedfor assigningall

objectsto a particular class.

As previoussurveysindicate,certainrathersimplisticmethodsareperfectlyadequate

for performingaccuratestar/galaxyseparationat bright to moderatelyfaint magnitudes:

a methodinvolving PSF-fitting is necessaryonly whenapproachinga magnitudeor so

within thedetectionlimit. Oneneednot approachthis limit just to producelists of stars

for empiricallyestimatingthe PSF template.Usinga straightforwardapproachsimilar to

onesusedfor final classificationin previoussurveys,wewereableto developatechniquefor

robustly selectingcandidatePSFstars,up to somelimiting magnitude,uniformly within

and amongplates.

Thesolutionweemployis to fit, onafootprint byfootprint basis,thestellarlocuswithin

four separateparametervs. magnitudeprojections,measuringfour newattributesin the

form of the distanceof eachobjectfrom the stellarridgein eachdimension.Wecompute
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theseso-called'revised'attributes for the Mcore,log(Area), IR1, and S parameters

describedabove.Wefind that in thesenewparameterspaces,the line distinguishingstars

from galaxiesis roughlylinearanddoesnot vary muchfromimageto image.

Measuringthe distanceof anobjectfrom the stellarlocusfirst requiresthe ability to

delineatethe locationof the locus. The method weusefor automaticallytracking the

locusin an attribute vs. magnitudeparameterspaceworksby computinga histogram

of the attribute valuein a set of 0.5TM bins spanning the instrumental magnitude ranges

15.5m-21.5 m in Jina and 15.5m-20.5 m in Frost. Objects brighter than the lower magnitude

limit are typically saturated and must be classified separately; and one has little hope of

forming accurate star lists using this type of method at magnitudes fainter than the upper

limit.

Our locus tracking algorithm next computes robust estimates of the mode and width

of the histogram for each magnitude bin. These mode values and their error estimates

(specified by the widths) are then fit by a fourth or fifth order polynomial as a function of

magnitude (see Figure 4). The fit is subtracted from each object, effectively bringing the

stellar ridge close to the abscissa on an attribute vs. magnitude plot. To assure an optimal

fit to the stellar ridge, the algorithm applies the same fitting and subtraction procedure

a second time, this time using a third or higher order polynomial. The optimal orders

used to perform the fit in the first and second iterations were found to be very consistent

across all DPOSS images and were determined separately for each of the four parameters.

These fitting parameters were ultimately hard-coded into the measurement process. Other

researchers found it useful to renormalize the new attribute values by the width of the

stellar locus. Our tests did not indicate significant variations in the widths of the revised

attribute distributions from footprint to footprint, so we eliminated this step.

The distribution of the revised parameters derived for the objects shown in Figure 3

appear in Figure 5. As demonstrated in this example, we find that the distribution of

objects in revised attribute space differs little between plates. The same holds true for the

other revised attributes we compute, as well.

Along with magnitude and ellipticity, the four revised attributes now form a six-
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dimensionalparameterspacein which weperformstar/galaxy separation.To produce

our star selectorclassifier,we trainedthe decisiontreeinductionsoftwareon a setof over

a thousandobjectswhich oneof us (NW) classifiedby eyefrom the digitized scansof

plates .1380 and .1442. Subsequent comparison with several hundred much more reliable

classifications obtained from CCD images indicated an error rate of less than 5% in the

training list constructed by eye.

The star selector we produced had an error rate of less than 3% percent on an out-

of-sample list of objects from the same two plates in the instrumental magnitude range

16.5 TM to 19.0 TM. Subsequent application of the classifier on independent J and F data

resulted in lists of candidate stars in this magnitude range which we found to be more than

accurate enough for use in constructing the PSF template required by FOCAS resolution.

Whereas the typical footprint contains between 3500 to 4500 objects, the star selector

returns between 500 and 600 objects in the magnitude range listed above. This list of

candidate stars is provided to a FOCAS routine which averages the central nine by nine

pixels of each object to form the PSF template.

Armed with the template, one is then able to run the FOCAS resolution routine on

each object. As described previously, this routine determines the best-fitting scale (a) and

fraction (fl) values, which parameterize the fit of a blurred (or sharpened) version of the

PSF to each object. The template used to model each object is of the form:

= + (1 - j)s(ri)

where ri is the position of pixel i, a is the broadening (sharpening) parameter, and/J is

the fraction of broadened PSF. In turn, the resolution parameters are combined with the

previous six used for star selection in order to perform final object classification.
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4 Classification Results

In the course of processing each plate, the attribute measurement tasks described in the

previous section, including revised attribute measurement and star selection, are performed

fully automatically, as is the task of final object classification. However, in order to produce

the classifiers implemented within the DPOSS reduction programs, we were required at

some point to manually produce large samples of classified objects for training and testing

purposes. We describe how we produced these training samples below. The same steps

would be required of any user who might wish to construct their own, specialized classifier,

or to improve upon or monitor the quality of the existing classifiers on future data. We

follow this discussion with an examination of the results of applying these classifiers to

actual DPOSS data.

4.1 Classifier training

In order to obtain training data for classifying faint objects in DPOSS, especially those too

faint for recognition by human inspection of the plates alone, we made use of higher reso-

lution (and narrower field of view) CCD imagery obtained from the Palomar 60" telescope.

CCD images are being collected systematically in order to photometrically calibrate the

Survey (see Weir, Djorgovski, and Fayyad 1994); however, they serve this very important

role in the object classification process as well.

For classification purposes, the obvious advantage of a CCD image relative to a plate

is higher resolution and signal-to-noise ratio at fainter levels. By matching a CCD image

with the corresponding (small) portion of the plate that it covers, one can determine the

classes of objects too faint to classify by eye on the plate. By training learning algorithms

to classify these faint objects correctly using the attributes derived from the plate image,

SKICAT can conceivably classify objects from the survey that even humans would have

difficulty classifying.

The training and test data consisted of objects collected from four different plate fields

from regions for which we had CCD image coverage, as well as the by-eye classifications

used to construct the star selector described in the previous section. To adequately test
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the reliability of the classifier,wedividedthedata into independenttraining andtest sets

from differentplates.The F plate training sample totaled 1239 objects from plates F381

and F442, while the J sample consisted of 2563 objects from plates J380 and J342.

We trained the decision tree induction and combining algorithms, O-Btree and RULER,

separately on the J and F data in order to produce independent classifiers. As a matter

of future research, one might attempt to train a classifier which combines the information

available for objects matched in multiple images, particularly in two colors. The results

of our training were a list of 84 rules for the F plate classifier and 96 for the J's. Each

rule is effectively an "if...then..." statement assigning a class to any object meeting its

conditions. For both classifiers, each rule conditions upon anywhere from three to six

different parameters. By construction, as described in Section 3.2.2, the rules will generate

a unique classification for any object within the training set's multidimensional parameter

space.

4.2 Comparisons with training and test data

We tested the classifiers on a sample of 1539 objects from plates F380 and F382 and 589

objects from plates J381 and J382. Testing consisted simply of keeping track of the fraction

of objects classified correctly or incorrectly as a function of magnitude. It is noteworthy

that for a large fraction of these objects, an astronomer would have difficulty reliably

determining their classes by examining the corresponding digitized plate images. As an

example, see Figure 6, which depicts a star and galaxy as it appears on a plate and on a

CCD. These objects are representative of those with a magnitude at the limit of which we

would like to perform accurate star/galaxy separation. We have begun spectroscopic follow-

up observations of a sample of the small, faint objects, providing another independent check

on our feint classifications.

The accuracy we achieved from applying the classifiers on the training and test DPOSS

data sets appears in Tables 1 and 2. We estimate the accuracy by measuring the complete-

ness and contamination of a galaxy catalog formed from the sample data. The training re-

sults reflect the in-sample accuracy of the classifier, which is largely irrelevant and included
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only for completeness.The test setresultsareindicativeof the accuracyof the classifier

on independentdataand,therefore,reflectthe true qualityof the classifier.Theseresults

areplottedin Figure7.

Note that on our test data, weachieveapproximately90%completenessand 10%

contaminationdownto r ,,_ 19.6 '_ and g ,-_ 20.5 rn, or an equivalent Bj of approximately

21.0 'n. This reflects an accuracy rate comparable to what previous surveys attained, but

at magnitude levels 0.5 ° to 1.0 "_ fainter. Our limited spectroscopic follow-up observations

to date are fully consistent with these results.

Though not listed here, we also computed the results of the J classifier on a test set

of data from the same plates on which the classifier was trained. The completeness and

contamination closely matched that of the test set from independent plates. Therefore, we

can expect the performance of the classifiers to be virtually the same for large catalogs of

objects from either the training or test sets of plates. We can help confirm this expectation

by comparing the consistency of classifications from plate to plate, as we do below.

We also confirmed the relative importance of the resolution attributes for object classi-

fication. When the same experiments were conducted using only the six attributes used in

star selection, the results were significantly worse. The error rates jumped above 20% for

O-BTree, above 25% for GID3*, and above 30% for ID3 at a magnitude of approximately

20.0 m in g. The respective sizes of the trees grew significantly as well. This clearly demon-

strates that although learning algorithms improve matters considerably by allowing one

to optimally and objectively make use of multiple parameters in the classification process,

the choice of parameters is still of first order importance.

4.3 Comparisons in plate overlaps

The tests described above indicate an overall classification accuracy of approximately 90%

at a magnitude of approximately 19.6 "_ in r and 20.5 m in g. If we assume that the

probability of an object being correctly classified is independent from plate to plate, this

would imply a consistency of classification of approximately 82%. This is the sum of the

probabilities of both classifications being correct (0.9 _) or incorrect (0.12). Measuring
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the consistencyof classificationsfrom plateto plateacrossmanydifferentplatesprovides

somemeasureof theuniformity of plateclassificationaccuracies,if not their actuallevels

of accuracy.In Tables3, 4, and 5 welist the consistencyof object classification for the

large number of objects measured in each pair of overlapping plates of the same color and

overlapping plates of the same field but different color. Note that at each magnitude level,

the consistencies are in line with the accuracies listed in the previous section assuming

independent classifications.

Also notice that the consistency of the classifications between the pairs of plates on

which the classifiers were trained (F381/F442 and J380/J442) does not significantly differ

from the consistency of other measured pairs. This corroborates the notion that the clas-

sification accuracy for these plates as a whole is no better or worse than that for the test

plates, despite the fact that the classifiers were trained exclusively on objects from those

plates. In this sense, the classifiers are truly robust.
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5 Initial Experiments with Unsupervised Classification

We have also begun exploring the application and implementation of unsupervised classi-

fication techniques like Autoclass (Cheeseman et al. 1988) for the purpose of automated

machine discovery. Unlike the so-called supervised methods of classification that we have

described so far, where the computer learns how to distinguish user-specified classes within

the data, unsupervised classification consists of the computer identifying the statistically

significant classes within the data itself. For example, one could employ this type of method

to try to systematically detect new classes of objects within astronomical catalogs.

Our own initial experiments in applying Autoclass to DPOSS appear to confirm the va-

lidity and usefulness of this approach. After supplying Autoclass with the eight-dimensional

feature vectors from a sample of several hundred objects from our four fields, it analyzed

the distribution of the objects in this parameter space and suggested four distinct classes

within the data. Representative objects from these four classes are presented in Figure

8. Visually, the classes seem to divide into stellar objects, stellar-like objects with a low

surface brightness halo, and diffuse or irregular objects with and without a central core.

Its success at distinguishing these apparently physically relevant classes based just upon

eight image parameters suggests that far richer and innovative results may be in store

when ones matches multiple catalogs together, increasing the informational dimensionality

of the data set manifold.
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6 Concluding Remarks

Through the careful selection and construction of object attributes, and the application of

machine learning to derive sets of rules based upon them, we have been able to achieve

high rates of classification accuracy at levels up to a magnitude fainter than in previous

Schmidt surveys. By examining a set of four fields in two colors, we have verified that galaxy

catalogs produced from DPOSS using this technique appear to be consistently complete

and contaminated across multiple plates. In fact, in testing our classifiers on completely

independent plate data, we found them to produce 90% complete galaxy catalogs down

to an equivalent Bj magnitude of approximately 21.0 m. There is no a priori reason why,

without any further work, these very same classifiers should not result in exactly the same

accuracy rates for all future high Galactic latitude DPOSS plates. However, we note that

by accumulating more and better overlapping CCD and plate data, one may be able to

train classifiers that are able to generalize even better.

A significant additional benefit of the classification approach we describe is that it

easily generalizes to the construction of any number of object classifiers for any purpose in

the future. Provided the astronomer is able to construct a suitably large enough sample of

objects for both testing and training, the same technology may be applied for a wide variety

of scientific purposes. To facilitate the construction of such sets, we have implemented a

tool within SKICAT that allows the user to display individual objects from a DPOSS plate

scan and assign a classification to each. One may also, as we have done, use the extensive

object matching technology within SKICAT to retrieve attributes from one set of catalogs

(e.g., plates) and classifications from their matched counterparts in others (e.g., CCDs).

It is our hope that with the availability of tools such as SKICAT and Autoclass, and the

demonstrated scientific value they add, such advanced data analytic techniques may see

more widespread use in the future.
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[]

Figure 1: In this sampledecisiontree, onestarts at the top node(root), followingthe
appropriatepath to a final leaf (class)baseduponthe truth of theassertionat eachnode.

[]

Figure2: A portionof a muchlargeractualdecisiontreegeneratedby the O-Btreealgo-
rithm for performingstar/galaxyclassification.The intervalappearingaboveeachnode
indicatestherangein valueoftheattribute specifiedin thenodeabovethat anobjectmust
meetfor it to passalongthat branch. The dark branchesleadto actual classifications.
The numberin parentheseswithin eachleaf indicatesthe numberof training examples
classifiedcorrectlyat that node.

Figure3: The distribution of log(Area) vs. MTot in sections of plates J380 and J442.
Note that the stellar locus is nonlinear and different for each plate. The locus shows similar

variance even within plates.

Figure 4: The log(Area) attribute and the locus fit to its distribution before each iteration

of the locus subtraction algorithm.

Figure 5: The distribution of the revised log(Area) vs. instrumental magnitudes in plates

J380 and J442 after the two-step locus fitting and subtracting process.

Figure 6: The top two images are from the scan of plate J442. Each object has a g

magnitude of approximately 20.0. The bottom two images are of the same objects but
from CCD frames. Our classifier correctly classified the left object as a star and the right

as a galaxy, despite their almost indistinguishable appearance on the plate. The higher

quality CCD images allowed us to provide reliable classifications to these objects which we

would otherwise be unable to use in classifier training or testing.

Figure 7: The accuracy of our star/galaxy separation technique is depicted by the complete-

ness (fraction of galaxies classified as such) and contamination (fraction of non-galaxies

classified as galaxies) measured within our test set of data.

Figure 8: Each row consists of representative objects from one of the four classes discovered
in the DPOSS data by Autoclass. It appears one can relate each type to physically, not

just statistically, distinct classes of objects.
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Training Set Testing Set
r mag completeness contamination completeness contamination
16.56

16.96

17.43

17.95

18.50

19.07

19.64

20.21

20.75

1.000 0.000

1.000 0.000

0.938 0.032

0.979 0.000

0.966 0.012

0.969 O.O54

0.985 0.043

0.948 0.081

0.950 0.102

0.857 0.000

0.833 0.062

0.966 0.034

0.885 0.042

0.878 0.133

0.929 0.103

0.895 0.094

0.906 0.247

0.902 0.260

Table 1: The completeness (fraction of galaxies classified as such) and contamination

(fraction of non-galaxies classified as galaxies) for the samples of F plate objects used for

classification training and testing. The training samples are from plates F381 and F442.

The testing samples are from plates F380 and F382.
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Training Set Testing Set
g mag completeness contamination completeness contamination

16.68

17.17

17.67

18.18

18.69

19.21

19.73

20.25

20.77

21.30

21.81

1.000 0.000

0.857 0.077

0.935 0.033

0.956 0.030

0.989 0.021

1.000 0.000

1.000 0.091

1.000 0.050

0.963 0.037

0.954 0.019

0.964 0.024

0.891 0.039

0.806 0.167

0.848 0.200

0.966 0.097

0.925 0.098

0.892 0.065

0.861 0.151

0.796 0.204

0.774 0.250

Table 2: The completeness and contamination for the samples of J plate objects used for

classification training and testing. The training samples are from plates J380 and J442.

The testing samples are from plates J381 and J382. Too few objects of bright magnitude

were available to provide a statistically significant test below g = 17.5 m.



r mag F380/F381 F380/F442 F381/F382 F381/F442 Average

(8682) (1357).... (9246) (3865)

16.23

16.56

16.96

17.43

17.95

18.50

19.07

19.64

20.21

20.75

21.25

0.933 0.947 0.880 0.886

0.952 0.967 0.957 0.964

0.952 0.839 0.968 0.971

0.972 0.870 0.937 0.925

0.964 0.983 0.957 0.984

0.941 0.919 0.961 0.969

0.893 0.899 0.921 0.875

0.825 0.855 0.826 0.852

0.746 0.773 0.761 0.749

0.750 0.738 0.681 0.743

0.746 0.753 0.718 0.775

0.912

0.960

0.932

0.926

0.972

0.948

0.897

0.840

0.757

0.728

0.748

Table 3: The fraction of objects classified consistently as a function of magnitude in the

overlap of the listed plates. These rates are consistent with the accuracies listed in Table

1. The number of objects tested in each overlap is listed below the field names.



g mag J380/J381 J380/J442 J381/J382 J381/J442 Average

(8553) (1418) (9659) (3850)
15.73

16.20

16.68

17.17

17.67

18.18

18.69

19.21

19.73

20.25

20.77

21.30

21.81

0.548 0.533 0.623 0.538

0.913 0.846 0.899 0.860

0.977 1.000 0.954 1.000

0.976 0.964 0.975 0.962

0.962 0.972 0.979 0.972

0.975 1.000 0.985 0.964

0.958 0.984 0.970 0.962

0.915 0.927 0.942 0.890

0.857 0.911 0.881 0.874

0.755 0.812 0.780 0.820

0.688 0.759 0.717 0.690

0.673 0.671 0.717 0.665

0.736 0.701 0.706 0.661

0.561

0.880

0.983

0.969

0.971

0.981

0.968

0.918

0.881

0.792

0.713

0.681

0.701

Table 4: Same as Table 3, but for J plates.



r + g Field

mag 380 381 382 442

(7096) (8456) (7660)(7900)
15.95 0.656 0.795 0.777 0.986

16.45 0.983 0.953 0.992 0.953

16.95 0.948 0.982 0.962 0.970

17.45 0.977 0.964 0.966 0.951

17.95 0.981 0.964 0.986 0.948

18.45 0.940 0.952 0.967 0.950

18.95 0.926 0.926 0.928 0.943

19.45 0.866 0.859 0.901 0.885

19.95 0.804 0.768 0.818 0.787

20.45 0.729 0.682 0.763 0.713

20.95 0.718 0.681 0.684 0.690

21.45 0.733 0.736 0.672 0.678

Average

0.803

0.970

0.966

0.964

0.970

0.952

0.931

O.878

0.794

0.722

0.693

0.705

Table 5: The fraction of objects classified consistently as a function of average g and r

magnitude in the overlap of the J and F plates covering the indicated fields. The number

of objects tested in each overlap is listed below the field names.
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Abstract

In our first analysis of the Digitized Second Palomar Observatory Sky Survey (DPOSS), we

examine galaxy counts on an overlapping set of four survey fields near the North Galactic

Pole, in both the J and F passbands. Through detailed simulations of a subset of these

data, we were able to analyze systematic aspects of our detection and photometric pro-

cedures, as well as optimize them. We discuss how we calibrate the plate magnitudes to

the Gunn-Thuan g and r photometric system using CCD sequences obtained in a program

devoted expressly to calibrating DPOSS. Our technique results in an estimated plate-to-

plate zero point standard error of under 0.10 "_ in g and below 0.05 rn in r, for J and F

plates, respectively. Using the catalogs derived from these fields, we compare our dif-

ferential galaxy counts in g and r with those from recent Schmidt plate surveys as well

as predictions from evolutionary and non-evolutionary (NE) galaxy models. While we

find some significant differences between our measurements and others, particularly at the

bright end, we find generally good agreement between our counts and recent NE and mild

evolutionary models calibrated to consistently fit bright and faint galaxy counts, colors,

and redshift distributions. The consistency of our results with these predictions provides

additional support to the view that very recent (z < 0.1) and exotic galaxy evolution, or

non-standard cosmology, may not be necessary to reconcile these diverse observations with

theory.

keywords: galaxy counts, galaxy evolution, large scale structure, photometry, sky surveys
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1 Introduction

1.1 Background

Counts of galaxies per magnitude per square degree, A(ra), are among the most time-

honored observations in extra-galactic astronomy. At face value, however, they are also

among the most uninterpretable, as they represent the projection and convolution of so

many different physical effects. Galaxy counts are traditionally modeled assuming one

or more galaxy luminosity functions (LFs) for a few different galaxy types. Each type

is characterized by a model spectral energy distribution (SED). One evolves these galaxy

distributions and spectra with time over a grid of different luminosity evolution models

and cosmologies, in turn, 'observing' and counting the galaxies in a given bandpass after

applying the appropriate K-correction. In comparing actual measurements to predictions,

the standard null hypothesis has been a model with no evolution (NE) and a cosmology

of, e.g., qo ,,_ 0 and Ho "_ 50kms-1/Mpc. Such a set of parameters increases the volume

element and ages of present-day galaxies relative to higher qo and Ho models, providing

larger numbers of faint counts and decreasing predicted evolutionary effects at a given

redshift.

In the context of such models, recent galaxy surveys indicate an excess of blue counts by

a Bj of 19.0 m, or a mean redshift of only z _ 0.1, increasing substantially with magnitude

(Maddox et al. 1990; Tyson 1988). Red counts also indicate an excess, though not of

the same degree as the blue (Koo and Kron 1992). Perhaps more interestingly, however,

the counts at brighter red magnitudes display very large variations between and even

within individual surveys (Sebok 1986; Picard 1991a). Near-infrared (K band) counts, on

the other hand, are less steep and appear to be more consistent with NE models (Cowie

et al. 1990; Djorgovski et al. 1994), as does the apparent redshift distribution of galaxies

(Broadhurst et al. 1988; Colless et al. 1990; Lilly and Gardner 1991).

A variety of physical effects have been proposed to account for these observations,

including dramatic galaxy evolution at low redshift (Maddox et al. 1990), significant evo-

lution of LF shape (Broadhurst et al. 1988), density evolution through galaxy mergers



and/or the disappearanceof entirepopulations(Cowie,Songaila,and Hu 1991),largein-

homogeneitiesin thenumberdensityof galaxiesonscalesof (125h-lMpc)3(Picard1991a),

or evena non-zerocosmologicalconstant(Fukugitaet al. 1990). Any of these effects rep-

resents a fundamental, and largely ad hoc, revision of current standard models of galaxy

evolution, cosmogony, or cosmology. In the spirit of Occam's razor, it is natural that one

should fully explore the consistency of the data with less intricate models before embracing

any of these alternatives.

With this goal in mind, Koo and Kron (1992) investigated the possibility that when

uncertainties in the observations and models are more fully taken into account, there is no

need for exotic evolutionary scenarios to simultaneously account for the observed number

counts, colors, and redshift distribution of galaxies. Their model significantly differs from

most others not only in that it attempts to fit all these data at once, but in how they add

the flexibility in the model to do so. They claim that in order to adequately represent the

variety and range of colors observed at all magnitudes, one must allow for a rich variety

of galaxy spectral types: i.e., no small number of classes dominates. Indeed, given the

wide variety of observed galaxy spectral energy distributions (SEDs), there is no obvious

or agreed upon standard breakdown of fundamental SED types. Consequently, in their

model, Koo and Kron try to fit the data by substituting one form of model complexity

(more galaxy types) for other, more traditional ones (evolution of LFs or non-standard

cosmology). They assert that allowing for a finer disaggregation of present-day galaxy

types is consistent, even justified, by direct observation, unlike these other methods of

adjusting the models to fit the data. Through trial and error, Koo and Kron adjust the

non-evolving LF of each of their specified classes so as to best fit the data. Adopting a

qo = 0, they claim to establish a proof of concept, by producing a set of predictions which

match the observations reasonably well with the addition of only relatively mild galaxy

evolution.

Koo, Gronwall, and Bruzual (KGB,1993a) took the Koo and Kron model one step

further, using a non-negative least squares optimization algorithm to find the best-fitting

set of LFs for a set of eleven non-evolving galaxy spectral classes. Each class is characterized
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by ageand star formationrate. They assumeqo = 0.05 and Ho = 50 km sec-1/Mpc -1.

With these 'optimal' LFs, their NE model matches the observations significantly better

than the Koo and Kron model, indicating even less need for rapid or complicated evolution

of galaxies or non-standard cosmology to explain the data.

Implicit in the KGB model is the assumption that our knowledge of the present-day LF

of galaxies, especially at a fine level of color-class disaggregation, is sufficiently uncertain

that it makes sense to float these, rather than any other, model parameters freely. Of

course there are independent derivations of color-integrated and color-dependent LFs (e.g.,

Loveday et al. 1992; Eales 1993; Lonsdale and Chokshi 1993; Metcalfe et al. 1991),

which could provide at least some measure of 'reality check' on the LFs generated by the

KGB model. Unfortunately, the other derivations display a significant amount of internal

discrepancy. Consequently, allowing for the apparent uncertainty in alternative estimates,

KGB claim that their LF solutions are generally consistent with independent observations.

KGB fit their model to a combination of observations from many heterogeneous sources.

They note that differences in magnitude zero points, detection efficiency, measurement pro-

cedure, and random and systematic photometric errors are all important, but are best left

for the model to account for rather than 'correcting' the data to some standard form

in advance. However, to accurately model these effects requires detailed knowledge of the

experimental procedure at a level seldom even realized by the observers themselves. There-

fore, in their analysis to date, KGB do not explicitly take these effects for different surveys

into account. Nonetheless, it is these uncertainties, in the random and systematic effects

characterizing each survey, that fundamentally prevent us from more usefully constraining

the models. Uniform and better understood data, even if not of significantly higher quality,

are crucial.

1.2 The Digitized Second Palomar Observatory Sky Survey (DPOSS)

In 1985, the Oschin Schmidt 48-inch telescope at Palomar was dedicated to work on the

Second Palomar Observatory Sky Survey (POSS-II, Reid et al. 1991). This photographic

survey was prompted by the requirements of the space observatories, notably IRAS and



HST,aswell asthe generaldesireto providea newerepochsurveyof the northernsky to

complementboth the originalPOSSandthe recent,higher-qualitySERC/ESOsurveysof

the southernskies.POSS-II,which is morethan 60%completeasof August, 1994,will

eventuallycover894fieldsspaced5° apart in threepassbands:blue(IIIa-J + GG 395),

red (IIIa-F + RG610),andnear-infrared(IV-N + RG9). Thetypical limiting magnitudes

for point sources in the corresponding J, F, and N bands are 22.5 m, 21.5 "_, and 19.5 m,

respectively.

While the photographic survey is still under way, ST ScI and Caltech have already

begun a collaborative effort to digitize the complete set of plates (Djorgovski et al. 1992;

Lasker et al. 1992; Reid and Djorgovski 1993). So far, only a subset of the J, F, and

N plates have been scanned and processed. Both the photographic survey and the plate

scanning are estimated to be > 90% complete circa 1997. The resulting data set, the

Palomar-STScI Digital Sky Survey (DPOSS), will consist of ,,_ 3 TB of pixel data: ,_ 1

GB/plate, with 1 arcsec pixels, 2 bytes/pixel, 203402 pixels/plate, for all survey fields in all

three colors. ST ScI will provide an astrometric solution for each plate accurate to within

approximately 0.5 arcsec RMS over scales less than a degree. In conjunction with the

plate survey, we are also conducting an intensive program of CCD calibrations using the

Palomar 60-inch telescope, using the Gunn-Thuan gri bands. These CCD images serve

both for magnitude zero-point calibration and object classification purposes. The plate

scans, when complete, will be the highest quality set of digital images covering the entire

northern sky produced to date.

In order to make most efficient use of these data, and to generally facilitate the exploita-

tion of POSS-II, Caltech Astronomy and the JPL Artificial Intelligence Group have been

engaged in a collaborative effort to integrate state-of-the-art computing methods for the

scientific utilization of DPOSS. The traditional means of extracting useful information from

imaging surveys is through the construction of object catalogs. Thanks to developments

in the fields of pattern recognition and machine learning, in addition to raw computing

power, it is now possible to reliably construct such catalogs objectively and automatically

with a higher degree of accuracy than ever before. The result of our joint effort is the Sky



ImageCatalogingandAnalysisTool (SKICAT), a suiteof programsdesignedto facilitate

the maintenanceandanalysisof astronomicalsurveyscomprisedof multiple, overlapping

images.

1.3 The Palomar Northern Sky Catalog (PNSC)

The result of applying SKICAT to DPOSSwill be the PalomarNorthern Sky Catalog

(PNSC),whichwhencompleted,is expectedto contain>_5 × l0Tgalaxies,and>_2 × 109

stars,in threecolors(photographicJFN bands, calibrated to CCD gri system), down to

the limiting magnitude equivalent of B ,'_ 22 _, with star-galaxy classifications --, 90 - 95%

accurate down to the equivalent of B ,,, 21 _. The catalog will be continuously upgraded

as more calibration data become available. It will be made available to the community via

computer networks and/or suitable media, probably in installments, as soon as scientific

validation and quality checks are completed. Analysis software (parts of SKICAT) will

also be freely available.

A small portion of the PNSC covering a region near the North Galactic Pole is already

complete, providing an early indication of the scientific potential of the full catalog. Ia

this paper, we report on the first detailed analyses performed using these data, in the

form of galaxy counts in the J and F passbands. In short, we find the data to be of

high enough quality and sufficiently well understood to provide useful new constraints to

galaxy evolution models. In addition, their consistency with existing NE models provides

yet more evidence that elaborate evolutionary scenarios or non-standard cosmology may

not be necessary to account for the observations.

The single greatest known source of systematic error in our measured number counts is

uncertainty in the instrumental to calibrated-magnitude transformation. In brief, the pro-

cedure we use to calibrate the survey is first to adjust each plate's instrumental magnitudes

by an offset to match a survey-wide instrumental system. Next we apply a linear trans-

formation to convert the survey instrumental J and F magnitudes to the Gunn-Thuan g

and r system. For analysis purposes, we restrict our galaxy catalogs to 16 'n < g < 20.5"

and 16.5 _n < r < 19.6 rn, so as to remain within the well-calibrated, non-saturated, and
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well-classified (,_ 90% complete and ,,, 10% contaminated) portion of each catalog. In this

magnitude range, we estimate that the systematic plate-to-plate RMS error in zero point

offsets are under 0.10 '_ in g for J plates and below 0.05 m in r for F plates.

In the section that follows, we provide a more complete description of the plate and

CCD data and the measurement procedures used in our analysis. Section 3 describes the

methodology and consistency of our technique for photometrically calibrating the plates.

In Section 4, we compare our counts with those of other recent Schmidt plate surveys in

addition to theoretical models. In the final section, we discuss these results.



2 The Data

Our survey is derived from four POSS-II survey fields measured in both F and J passbands.

In addition, we have obtained extensive CCD coverage of small fields within these plates.

Below we provide characteristics of the photographic and digitized plate data, as well as the

methods we used for detecting, measuring, and classifying plate objects. This is followed

by a description of the CCD data and our measurement procedures for them.

2.1 Plate data

2.1.1 Photographic plates

The four POSS-II fields used in this study (numbers 380, 381,382, and 442) were chosen

for their proximity to the North Galactic Pole, where many previous galaxy surveys have

been performed, and because they were the first digitized plates available in two colors

and for which we had CCD coverage. The fields are depicted in Figure 1. Also noted in

the figure are the locations of the CCD sequences obtained within these fields, indicated

by the number of the AbeU cluster on which they were centered (e.g., A1694) and/or the

CCD field number (e.g., F6) from an ad hoc numbering system we adopted for our CCD

fields.

The plate number, center location, approximate photographic sky density, exposure

time, sky transmission quality, grade assigned to, and estimated limiting magnitude in g

or r of each of our survey plates appears in Table 1. The grade reflects the quality of

the plate in terms of depth, seeing, number of artifacts (e.g., plane trails), etc., as judged

by the POSS-II quality control staff. A and B-grade plates are automatically accepted in

the POSS-II, while C-grade and lower observations are typically repeated. What we term

J plates actually result from the combination of Kodak III-aJ emulsion with the GG395

filter, whereas F plates are from III-aF emulsion combined with the RG610 filter.

Each Oschin Schmidt plate is 14 inch square in size, corresponding to a 6.6 ° × 6.6 ° field

of view. The dashed circles in Figure 1 centered within each plate field have a diameter of

6° and enclose the relatively unvignetted portion of each plate. Tritton (1983) measured
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thevignettingfunctionof the U.K. SchmidtTelescope,whichshouldbesimilar to that for

the Oschin,andfoundthat thevignettingcorrectionwasat most0.03m at a radius of 3°,

rising to a level of 0.25"* in the plate corners. DeCarvalho (1994, priv. comm.) has begun

a study of the vignetting function of POSS-II plates using DPOS$ scans and verifies these

results.

Tinney (1993), in his analysis of POSS-II F and N plates, was unable to detect vi-

gnetting effects in his catalogs, which were restricted to a 3° radius. We also confine our

photometric analysis to objects within this radius (also avoiding the sensitometry spots)

on each plate, with a minor exception related to field 442 noted below. This restriction

would have to be relaxed in order to cover a continuous solid angle of sky using multiple

plates. However, to use these data reliably would require an empirical estimate of the

actual vignetting function for the Oschin Schmidt, which we will only be able to mea-

sure when a larger number of digitized plates are available. We therefore restrict, for the

time being, our analysis to the unaffected portions of each plate until such an empirical

correction is obtained. We also excluded regions surrounding bright stars, so as to avoid

contaminating our catalogs with artifacts mistakenly classified as galaxies, or true galaxies

with very poorly measured magnitudes due to stellar contamination.

The plate holder on the Oschin Schmidt is nitrogen flushed during each exposure to

help assure uniform hypersensitization across the plate. In their photometric analysis of

U.K. Schmidt plates, the APM group (Maddox, Efstathiou, and Sutherland 1990) found

that plates observed in this fashion suffered much less variation in response across the field.

Unfortunately, only eight of their plates were observed using this method; consequently,

they had to go to significant effort to remove this large source of field variation in their

survey. All of the POSS-II plates were obtained using nitrogen flushing.

Additional, non-vignetting field variations at the level of a few percent of sky are still

present within individual DPOSS images and show up most clearly when analyzing binned

versions of the plate scans. However, without a sufficient number of plate scans in hand,

it is difficult to determine whether the observed sky background variations are additive

or multiplicative in nature, due to zodiacal light, uneven emulsions, uneven hypering or
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developing,or to a limited degree,actualGalactic(extragalactic?)sky backgroundvaria-

tionson scaleslessthan a degree.Forour analysis,like that of Tinney(1993)andPicard

(1991b),wedo not correctfor theseeffects,preferringto wait until wehavebetter under-

standingof their originbeforetakingtheminto account.Instead,weverifybelowthat our

plate-to-plateconsistency,evenwhile ignoringtheseeffects,iswithin acceptablelimits for

ourscientificpurposes.Nonethelesswenotethat a better determinationof the sourceof

thesebackgroundvariationsmaybeaninterestingsubjectof futureresearchusingDPOSS.

2.1.2 Digitized scans

Theplatescandataprovidedby STScIarein theformof images23,040×23,040pixelsin

size,scaledin arbitrary photographicdensityunits. Eachpixel is onesquarearcsecondin

sizewith adynamicrangeof twobytes.Eachscanincludesanimageof the 16sensitometry

spotsthat appearin thesouthwestcorner of each POSS-II plate. The first step in reducing

the digitized plate data is to fit a characteristic curve, or so-called 'HD' curve, to these

spot levels, providing a density to intensity transformation for the entire plate.

The mathematical formula we use to fit the measured plate densities (D) to relative

intensities (I) is:

log/= P(D) (1)
(Ds- D) × (Dr - D)

where P(D) is a polynomial function of the density, and the saturation and toe densities,

Ds and DT, are those corresponding to fully exposed and unexposed portions of the plate,

respectively. An example of such a fit for plate F442 appears in Figure 2. The polynomial

coefficients, together with the toe and saturation values, establish the conversion applied

to each plxel value.

There is a long history to efficiently modeling the HD curve. The method employed

by ST ScI (Russel et al. 1990) in constructing their Guide Star Catalog, for example,

involves a more complicated formula and averaging many plates together. By their own

admission, however, they find the more complicated expression to be overkill for the linear

part of the curve of most interest. In addition, we found considerable variation of the curve

among different plates, requiring independent fits. We find the instrumental magnitudes
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resultingfrom our HD fits to beextremelyconsistentfrom plate to plate, in the senseof

only requiringa singlezeropoint offsetto matchthem. This provides,in our opinion,the

mostimportant testof thevalidity of our linearizationscheme.

2.1.3 Object detection and measurement

The three most critical elements of plate processing are detection, photometry, and clas-

sification. By using the Faint Object Classification and Analysis System (FOCAS, Jarvis

and Tyson 1979; Valdes 1982) for image detection and measurement, SKICAT, the sys-

tem we designed to process and manage the DPOSS plate scans, is able to reach close to

the faintest reliable limits of the plate scans, i.e., down to a typical equivalent limiting

B magnitude of ,_ 22 m for galaxies. In addition, by measuring quasi-asymptotic rather

than isophotal magnitudes, using local sky estimates from annuli surrounding each ob-

ject, and adapting the measurement thresholds within and across each plate to adjust for

differences in sky level, noise, and pixel-to-pixel correlation, we are able to obtain very

consistent photometry within and across plate boundaries.

SKICAT automatically analyzes each plate as a set of 13 × 13 overlapping 'footprint'

images of 20482 pixels each. Not only is this approach computationally convenient, but it

provides greater sensitivity to position-dependent plate effects. It also facilitates quality

control via the systematic comparison of the overlap regions. SKICAT applies the FOCAS

utilities to each of these footprints in order to construct the full plate catalog. First

SKICAT robustly estimates sky and sky sigma values for each footprint, providing values

that are quite accurate even when relatively large and bright sources exist in the image.

Seeded with these values, the FOCAS detection and background estimation procedures are

found to work well on the footprints. We were able to test the accuracy of this approach

by applying it to the simulated plate images described in Appendix A. There we discuss

how we created the simulations and how we were able to use them to optimize and asses

our choice of FOCAS detection and measurement parameters.

The FOCAS detection algorithm works by tracking each image area above some thresh-

old comprising some minimum number of pixels. In Appendix A, we describe in detail how
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wedetermineand adjustthis thresholdin orderto achieveuniformsensitivitywithin and

betweenplates. The local sky brightnessfor eachobject featureis measuredusingthe

FOCAS'sky' command,whichcalculatesthemedianpixelvaluein anannularregionsur-

roundingeachfeature,avoidingpixels that are within the detectionisophoteof another

feature.The accuracyand systematiceffectsof this sky measuringalgorithmarelikewise

addressedin AppendixA.

After obtainingthe sky estimate,additionalattributes for eachfeaturearemeasured

usingthe FOCAS 'evaluate'routine. The total numberof measurementsnumbermore

than 30. Threedifferent typesof magnitudesare measured:aperture, isophotal,and

'total'. Eachmagnitude(m) is instrumentalandcomputedaccordingto:

m = 30.0 - 2.5 log L

where L is the luminosity, or sky-subtracted integrated intensity for each measurement.

The offset of 30.0 is arbitrary and was chosen to make the instrumental magnitudes approx-

imate the final calibrated values within a magnitude or two. The aperture magnitudes are

computed using a five arcsec radius. The isophotal magnitudes measure the sky-subtracted

flux within the detection isophote. The so-called FOCAS total magnitudes are computed

by 'growing' the detection isophote out a pixel at a time in all directions until the total

area is at least twice the original, then calculating the sky-subtracted flux within that area.

This magnitude is meant to provide a flux measurement less biased with respect to surface

brightness profile, approximating something like an asymptotic or true total magnitude.

The cost of decreased systematic error in this measurement is greater sensitivity to sky

subtraction, and hence, increased random error (relative to isophotal or aperture magni-

tudes). Appendix A provides a detailed comparison of the accuracy of these three types of

magnitudes for both stars and galaxies in the DPOSS scans. For the compelling reasons

outlined there, we have chosen to use FOCAS total magnitudes in our analysis.

Each object was deblended using the FOCAS 'splits' command. Effectively, this rou-

tine runs the detection algorithm on every detected object, but using successively higher

thresholds. 'Islands' detected at a given threshold are entered into the catalog as new
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objects, and all attributes are remeasured for them. The 'parent's' flux is divided between

the 'children' according to the ratio of isophotal fluxes obtained using the higher threshold.

This process continues recursively until no more islands are detected.

Improvements can certainly be made to the deblending process so as to improve the

quality of the photometry of the deblended objects, to better take deblending into account

when matching overlapping plates, and to handle the extreme crowding conditions to

be found in lower Galactic latitude POSS-II plates. Nonetheless, we find the present

implementation to be more than sufficient even for detailed analyses of higher latitude

plates, and that it at least represents a step above reduction without the use of deblending

at all, as in the case of the APM survey.

The J2000 RA and Dec of the central pixel of each object is calculated using trans-

formation coefficients provided by ST ScI. We have found these to provide ,-, 1.0 arcsec

RMS accuracy after correcting for systematic deviations on scales less than about a square

degree. In the future, ST ScI will provide more accurate plate solution coefficients that

should provide better that 0.5 arcsec accuracy on larger scales.

2.1.4 Object classification

The accuracy of star/galaxy separation generally determines the effective limiting mag-

nitude, in terms of scientific usefulness, of imaging surveys. This limit is, in very many

respects, more important than the object detection limit in terms of its impact on the

variety of programs for which the data may be used. For this reason, we concentrated

a great deal of effort in evaluating the effectiveness of various object classification algo-

rithms. A principal goal of SKICAT was to provide an effective, objective, repeatable,

and examinable basis for classifying sky objects at levels beyond the limits of previously

existing technology. A full description of our classification procedure is beyond the scope

of this paper and will be published separately (Weir, Djorgovski, and Fayyad, in prep.).

Here we provide just a sketch of our methodology and results.

Historical methods for classifying objects on plate scans would preclude the identifica-

tion of the majority of objects in each DPOSS image, since they are too faint for traditional
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recognitionalgorithms,or evenmanualinspection.Thesemethodsgenerallyinvolvealgo-

rithms for separatingstarsfrom galaxieswithin somelow dimensionalbut relativelywell

discriminatingparameterspace(e.g., magnitudevs. first momentradius), or within a

higherdimensional,but lessdiscriminatory,spaceof attributes.

SKICAT'sprocedurefor object classificationimprovesuponhistorical techniquesin

two ways. First, it measuresand utilizesa morepowerfulset of object attributes; sec-

ond,it benefitsfromrecentdevelopmentsin machinelearningthat enablethecomputerto

automaticallydeterminenear-optimalrulesfor distinguishingobjectswithin high dimen-

sionalparameterspaces.In particular,SKICAT utilizesthe GID3* and O-Btreedecision

tree induction software(Fayyad1991;Fayyadand Irani 1992;Fayyadand Irani 1993),

togetherwith the Rulersystem(Fayyad,Weir,and Djorgovski1993)for combiningmul-

tiple treesinto a robust collectionof classificationrules.Thesealgorithmsworkby using

measurementsof a training set of classifiedobjectsand inferringan efficientset of rules

for accuratelyclassifyingeachexample. The rules aresimply conjunctionsof multiple

"if...then.." clauses,whichconditionupon,in our case,anyof eight differentobject pa-

rametersto determineanobject'sclassification.The real advancementin usingthis type

of classifierrelativethoseusedin mostlarge-scalesurveysto dateis twofold: first, weare

ableto conditionupona larger and morediversesetof attributes; second,weallow the

computerto decidewhatarethe optimalnumberandform of the rules.

We alsoexperimentedwith neuralnets,andfound their performanceto beno better

than that of decisiontrees,with theadditionaldisadvantagesof slowtraininganddifficulty

in interpretingtheir results(but seeOdewahnet al. 1992 for a related work). Decision

trees are constructed very quickly, and there is never a problem with convergence, unlike

with neural nets.

We created separate sets of classification rules for objects from J and F plates. We used

the CCD calibration data, described below, which generally have superior image quality, to

construct the training sets used to train the plate object classifiers. Classifications derived

from the CCD data, more reliable than "by eye" estimates from the plates themselves, were

matched to plate measurements to form the training sets. For attributes we used a set of
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robust,renormalizedobjectparametersthat wefoundto bedistributedin a stablefashion

within andacrossplates.Theseattributesincludedavarietyofobjectbrightnessandshape

parameters,in additionto measuresofthefit ofeachobjectto a locallyderivedpoint spread

function (PSF). By training the algorithmsto classifybasedon theseattributes,wewere

ableto nearlycompletelyremovetheeffectof PSFvariationacrossagivenplate,or even

betweendifferentplates.Our averageaccuracyof star-galaxyclassificationsasa function

of magnitudewasdeterminedfrom testsusingindependentCCD-classifiedplate data. In

both the J and F bands, the accuracy drops below ,,_ 90% at about the same equivalent

magnitude level, B ,_ 21.0 TM (see Figure 3). This is ,_ 1'n above the plate detection limits,

and nearly 1'n better than what was achieved in the past with similar data. This increase

in depth effectively doubles the number of galaxies available for scientific analysis, relative

to the previous automated Schmidt surveys.

2.2 CCD data

We are conducting a systematic program on the Palomar 60-inch telescope to obtain CCD

sequences for use in conjunction with DPOSS. The CCDs are used for photometric calibra-

tion as well as for training data to construct the plate object classifiers described above. To

date, we have concentrated these observations on Abell clusters and random fields within

selected POSS-II fields in the North and South Galactic Caps. These fields were targeted

for initial analysis due to their overlap of previous surveys (e.g., that by Picard 1991b),

and because they formed two large, contiguous mosaics covering the highest latitude plates

in both the North and South. Higher latitude plates are of initial interest in such surveys

because they suffer less from crowding effects and are, hence, easier to analyze.

The CCD sequences are being obtained using the Gunn g, r, i photometric system

(Thuan and Gunn 1976), for calibrating the J, F, and N plates respectively. These

CCD passbands were chosen to provide a reasonable match to the emulsion plus filter

combinations of these plates (see Figure 4), and they do so better than any other standard

CCD photometric system. The primary disadvantages of the Gunn system are that the

standard stars are few, bright, and do not span a large range in color. Nonetheless, we
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foundthe standardssufficientfor calibratingour CCDdata to the precisionandaccuracy

necessaryfor our analysisof DPOSS.We, therefore,chosethe Gunnsystemin orderto

reducetheimportanceof a colorterm whencalibratingtheplatesto a CCDstandard.The

plate 9 magnitudes may subsequently be transformed to the more standard Bj passband

using the relation

Bj = 9 + 0.39 + 0.37(9 - r) (2)

from Windhorst et al. (1991), which is roughly equivalent to Bj ,,_ g + 0.5 mag for a faint

field field galaxy of average color.

The CCD exposures were typically 1800 seconds in g, 1200 in r, and 600 in i using an

un-thinned Tektronix CCD (CCD11). This is a 10242 pixel device with an inverse gain

of ,_, e-/ADU, read-out noise of 5 e-, and a pixel size of 24/z, resulting in a field of view

of 6.35' x 6.35'. Starting in September 1992, we began testing and using CCD16, which

is a thinned version of the same Tektronix chip. The quantum et_ciency of CCD 16 is

twice that of CCD 11 in g and 1.6 times higher in r. We aimed for sufficient depth in

our observations to allow for an SNR of at least 10 in the photometry of objects at the

classification limit of the survey, or effectively 21.0 r_ in Bj.

On photometric nights, we would observe from 10 to 12 different standard stars at a

range of air masses and color. On non-photometric nights with adequate (< 2.5") seeing,

we would take longer exposures in each passband, following up with shorter exposures of

the same field on photometric nights in order to calibrate them. In the analysis presented in

this thesis, we have only used CCDs obtained on nights recorded as apparently photometric

in the observing log book. We subsequently verified the consistency of the photometry for

each of these nights by examining the residuals of the standard stars, requiring that they

demonstrate no temporal trends and have a standard deviation below 0.03 "_. Every night

that we recorded as clear at the time of observation, and that we have reduced to date,

has met these criteria.

We reduced the CCD data using the standard CCDRED facility within IRAF. The

procedures include debiasing, edge-trimming, and flat-fielding. In order to achieve a flat-

field variation of less than 1% across each field, we followed a three-step process: division
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by a normahzedimageof the illuminateddome(domeflat), to accountfor pixel-to-pixel

variations;divisionby ablurred,dome-flattenedtwilight skyimage(sky flat), to takeout

large-scalevariations;anda blurred,domeandsky-flattenedaverageof thedeepexposures

takenduringthenight, to takeout theremaininglarge-scalevariations.Thelatter averages

werederivedby normalizingeachexposureby its skybrightnessandignoringvaluesin the

imagestack deviatingmore than 2.5 standarddeviationsfrom the meanfor that pixel

(sigmaclipping).

We calibratedthe CCD observationsindependentlyeachnight usingthe IRAF AP-

PttOT package.Wetypically took threeexposuresof eachstandardstar per frame,aver-

agingtheaperturemagnitudesto provideameanandstandarderrorperobservation.Each

night wesolvedfor the maximumlikelihoodvaluesof the coefficientsAt, A_, Br, Bg, Cr,

and Ca in the system of equations:

r = ri,_st + 2.5 logtr + Ar + B_ secz, + C,(g - r)

g = gi,_st + 2.51ogtg + Ag + Bg seczg + Cg(g- r),

where ri,_st and gi,,st are the instrumental magnitudes, t_ and tg are the exposure times,

and zr and zg are the airmasses at which the observations were made. Applying these

coefficients, we measured a standard error typically less than 0.02 'n in g and r for our

calibrated standard stars each night.

As in the case of plate images, we measured FOCAS total magnitudes from the CCDs.

The surface brightness threshold applied for both object detection (with a minimum area

requirement of six contiguous pixels above the threshold) and isophotal magnitude mea-

surement was 24.6 magnitudes per square arcsecond in both g and r. This value represented

an approximate average of the plate thresholds determined after reducing and bootstrap

calibrating them using a threshold corresponding to simply a constant number of stan-

dard deviations above the sky. Our estimate of the calibration uncertainty in the resulting

CCD galaxy catalogs down to a magnitude limit of 20.5 'n in g and 19.5 rn in r, derived by

comparing independent observations of the same fields, is approximately 0.05 "_ per CCD.

We found FOCAS's built-in classifier to provide very accurate results on the CCDs down
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to the platedetectionlimit, which is our magnitudelimit of interest.Wewere,therefore,

ableto let FOCASautomaticallyclassifyeachobject,with just a follow-upcheckby eye,

producingexcellentquality data without the needfor muchhumaninteractionor more

sophisticatedclassificationalgorithms.
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3 Plate Calibration

The method we use to photometrically calibrate the plate data is a two step process,

described in detail in Appendix B. Briefly, the steps consist of first transforming the

plate magnitudes onto a common instrumental system (we find that a simple offset for

each plate suffices), then linearly transforming the instrumental F and J magnitudes to

r and g, respectively. We demonstrate the accuracy of our calibration procedure with

plate-to-plate comparisons of calibrated magnitudes and number counts.

3.1 Calibrated plate-to-plate magnitude comparisons

As one check on the consistency of our plate photometry, we compared calibrated plate

magnitudes with one another in the four plate overlaps. Figures 5 and 6 plot r and g

magnitude differences vs. mean magnitudes for these regions. Tables 2 and 3 quantify

these results. In the magnitude range 15.0 m < r < 19m, the mean offset is -0.003 '_ with

standard deviation 0.039"L In the range 14.5 m < g < 19.5 'n, the mean difference is 0.008 m

with standard deviation 0.045 m. These results are consistent with error estimates based on

comparing calibrated plate to CCD magnitudes, which imply a systematic plate-to-plate

RMS error in zero point offsets of under 0.10 m in g for J plates and below 0.05 '_ in r for

F. The non-systematic RMS error in a single plate measurement, as measured using both

plate/CCD and plate/plate overlaps, is approximately 0.15 'n in r and 0.21 m in g.

3.2 Internal consistency of galaxy counts

As an additional check on the consistency of our photometric calibrations, we compared

galaxy number counts, A(m), for each of the plates in our four survey fields, as depicted in

Figure 7. Of particular note is the consistency of the level and slope of the counts between

plates of a given passband, especially relative to previous surveys (e.g., Sebok 1986; Picard

1991a).

In Figure 8 we plot the average of the counts from the four survey plates in each

band (solid line) versus the counts resulting from alternative plate-to-CCD calibration

transformations. The dotted lines surrounding the solid line represent the average result of

2O



adjustingtheslopeof thelinearcalibrationbyoneempirically-estimatedstandarddeviation

both up and down. After adjustment, in both cases, we re-derived a best-fitting intercept

corresponding to that slope. We believe these dotted lines bracket our true uncertainty in

the average counts due to plate-to-CCD calibration uncertainties. The differences observed

between individual plates in Figure 7 are readily explained due to magnitude-zero point

errors at the level implied by this uncertainty and Poissonian counting statistics. Large

scale structure presumably, at some level, also accounts for some variation.

As an additional check on the systematic effects of the plate-to-CCD magnitude trans-

formation process, we compare the counts derived after applying both a simple offset

(zero th order) and cubic calibration transformation. As noted in Appendix B, the offset

transformation produces magnitudes very similar to those from linear calibration, hence,

the implied counts are very similar. On the other hand, the cubic transformation results in

significantly different results in the r band, yielding a slope difference of 0.05 mag/dex. We

reject the cubic transformation on theoretical grounds (if the HD curve is fitted properly,

the appropriate magnitude transformation should be linear) and empirically, largely be-

cause of the instability it produces in stellar color-magnitude diagrams. Had we ignored or

never investigated the latter effect, however, we might very well have followed the standard

practice of previous surveys of fitting high order calibration curves, in order to account for

anticipated residual nonlinearities in the plate data. Figure 8 highlights the point that such

seemingly unimportant details as choice of polynomial order can result in large systematic

errors in scientifically relevant measurements several steps down the reduction chain. The

appearance of such fragility in the results should have an appropriately cautionary effect

on those who would attempt to infer too much from these or similar data.

In summary, we have tested and applied a photometric calibration technique for the

POSS-II scan data which involves using plate overlaps to establish a zero point offset to an

instrumental standard. 'Global' CCD transformation functions are then applied to convert

instrumental J and F magnitudes to Gunn g and r, respectively, for all of the plates. Using

this procedure, it appears one may be able to achieve consistent and reliable photometry

over a large portion of the survey without unreasonably many CCD calibration sequences.
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In fact, providedafull sideof aplateoverlapsawellcalibratedplate,our analysisindicate

that onecancalibratethat plateusingtheoverlapaloneto within azero-pointuncertainty

of 0.05TM - 0.1 rn. To achieve a similar uncertainty for a single plate using CCD data alone

would require the equivalent of an order of three CCD fields per plate, as we have used

here. Because the plates may be accurately transformed to a uniform instrumental system

and, in turn, all their overlaps with CCDs combined to infer a single calibration curve, one

should be able to effectively pursue a strategy of obtaining only a few CCD sequences per

many plates, provided the plates are relatively contiguous.
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4 Comparisons with Other Surveys and Theoretical Mod-

els

In Figure 9 we plot our r-band counts against model predictions and measurements by

Picard (1991a) and Sebok (1986) from independent scans of Palomar Schmidt IIIa-F plates.

The slope of our counts between 17.0 m < r < 20.0 "_ is 0.52 with a formal uncertainty of

0.01. The discrepancy between our measurements and others is fairly large for objects

brighter than 17 TM and compared to Picard's Northern counts, in particular. The latter

counts are from a survey of eight plates not more than 20 degrees from our own. We have no

explanation for this discrepancy, but note that the internal consistency of the counts among

plates within that survey is poor relative to ours, indicating either the effects of significant

physical variation in these fields or photometric zero-point or classification uncertainties. A

clearer understanding of the source of this inconsistency awaits the availability and analysis

of the same plates within DPOSS.

The model predictions in Figure 9 are those from the NE model by KGB discussed in

Section 1, a mild evolutionary version of the same (Koo, Gronwall, and BruzuaJ 1993b),

and a model closely approximating that by Guiderdoni and Rocca-Volmerange (GRV, 1990,

provided by Gronwall, priv. comm.). The KGB evolutionary model incorporates the same

spectral classes and LFs as the NE model, but with mild luminosity evolution of a subset

of the spectral classes according to the evolutionary tracks of Charlot and Bruzual (1991)

and Bruzual and Charlot (1993).

What is most surprising and illustrative in Figure 9 is the exceptionally high consistency

between the DPOSS counts and the KGB evolution and NE models. The predicted counts

were taken directly from their models without any renormalization or magnitude zero-point

adjustment. While the KGB models were constructed so as to fit the existing data, we

note that our results were not in their sample, and that previous bright measurements (viz.

Picard 1991a and Sebok 1986), given their dispersion, would not seem to have restricted

the models' predictions to any precise level. We can infer that consistency with other

data sets, namely bright and faint counts in the same and different passbands, colors, and
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redshiff distributions, significantly influenced the model predictions shown. Hence, in the

context of these models, the fact that our counts match the predicted counts so well is an

indication of the consistency of our measurements with these other, diverse data samples.

In contrast, a comparison of our counts with the GRV model indicates an increasingly

excessive number of galaxies relative to the NE hypothesis. We note that unlike the KGB

models, we did normalize the GRV model to our counts at r = 17 'n, as they had not been

previously scaled for consistency with any data. This model is an example of traditional

galaxy distribution synthesis models, which include a number of galaxy morphological

types, not color classes, and pre-defined Schechter LFs for each type. It is these models

to which previous researchers have compared their counts and postulated the existence of

excess galaxies at faint magnitudes.

In Figure 10 we plot the measured differential number counts in gj from this survey,

the APM southern survey of SERC/ESO plates, the predictions of no evolution models by

KGB, GRV, Ellis (1987), and the mild evolution model of KGB. The upper panel reflects a

conversion of the Bj magnitudes of all the non-DPOSS counts to g using the transformation

equation 2 from Windhorst et al. (1991) assuming a mean galaxy color (g - r) of 0.3 rn,

which we measure within the usable magnitude range of our survey. This transformation

roughly implies Bj _ g + 0.5 m. The lower panel is the result of horizontally shifting

all non-DPOSS counts until the DPOSS and APM counts are normalized at g = 17.0 m,

corresponding to a transformation of Bj ,,_ g + 0.7 m. We note that any transformation we

apply is only very roughly approximate, as there is a significant color term implied by the

differences in the plate IIIa-J, CCD g, and Bj bandpasses. As a further indication, we

point out that in Bruzual (1992) the average galaxy color at low redshiffs in his models is

(g-r) ,,_ 0.5 m, implying, according to Windhorst et al. (1991), Bj ,,- g+0.6 rn. Accordingly,

we believe that the uncertainty in the magnitude zero-point of our counts relative to the

others is approximately 0.2 m.

This uncertainty results in particular difficulty when trying to compare our color mea-

surements to those of the model. In Figure 11 we plot our (g - r) colors versus the trans-

formed KGB NE predictions for (Bj - RF). The color transformation from the model's
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(Bj - RF) to the data's (g - r) system, which may be off by as much as 0.3 m, is derived

by attempting to match actual star color distributions in the two systems.

Due to the zero point uncertainties in the blue counts, we are able to infer less from the

consistency of these preliminary g measurements with either theory or other data, awaiting

the production of model counts simultaneously in the Bj and g passbands. However, we

note that the slope of our g counts between 17.0 "_ < g < 20.0'* is 0.49 with a formal

uncertainty of 0.01, in excellent agreement with the slope of the APM counts, 0.50 +

0.01, in the equivalent magnitude range. Again, we also find that in comparing both our

measurements and APM's with the latest NE models, we find much closer agreement than

was found relative to older NE models (e.g., Maddox et al. 1990).

KGB explain some of the discrepancy between their NE model and traditional ones'

predictions as being due to the fact that these other models generally do not account for

the wide dispersion of galaxy colors within a galaxy morphological class; these traditional

models tend to over-predict red galaxies. Some previous models also assume a single LF for

each type, or luminosity functions for blue galaxies which tend not to even match the local

number density estimates. Although their NE model admittedly fails to sufficiently account

for all of the observations to which they try and fit (e.g., the model under-predicts faint

blue galaxy counts by ,_ 4070 by Bj = 24m), it is nonetheless able to relatively consistently

predict counts over a sufficiently large magnitude range as to suggest that mild evolution

and proper accounting of the systematic errors in the data sets could account for the

remaining discrepancies, without the need for evolutionary or cosmological exotica. The

KGB evolution model plotted in Figures 9 and 10 reflect an early first attempt to include

some degree of evolution in their model, producing a marginally better fit to our data in

both colors, and more significant improvement at fainter levels (Gronwall priv. comm.).
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5 Discussion

We describe the first scientific results using the Digitized Second Palomar Observatory Sky

Survey. We have measured A(m) in two passbands from DPOSS galaxy catalogs derived

from an approximately 100 squared degree region centered near the North Galactic Pole.

The IIIa-d and IIIa-F data were calibrated to the Gunn-Thuan g and r CCD photometric

system using internal overlaps and overlaps with a set of CCD sequences distributed across

the plates. Our estimated zero point uncertainty for the combined set of four plates in each

band is ,,_ 0.05 rn in r and -,_ 0.10 m in g. The measured differential counts as a function

of magnitude, both in level and slope, are very consistent from plate to plate, helping to

confirm the consistency of our plate-to-CCD photometric calibration technique.

In both the blue and red passbands, our measured counts agree well with the no evolu-

tion predictions of KGB, and less so with comparable empirical measurements, especially

at brighter magnitudes. As in comparable previous surveys, we do not find good agreement

between our measurements and the predictions of traditional galaxy NE models. However,

in fight of the most recent KGB models and our consistency with them, we believe these

initial DPOSS results provide additional empirical verification of the plausibility of their

hypothesis: that recent and/or extreme galaxy evolution or non-standard cosmology is not

demanded by the data at this time.

Further refinements of galaxy evolution models must include a detailed accounting of

the detection and measurement process in order to compare all the observations on a

consistent basis and provide a more conclusive comparison of model predictions with the

data. For example, as a note of caution, we refer to Figure 17, which demonstrates the

significant difference in measured differential number counts that result just from applying

different methods of photometry on the same data, in this case simulated images from

our survey. Although these detailed simulations suggest that systematic biases in our

measured galaxy counts are negligible within our catalog's estimated 90% completeness

limit, we nonetheless fail to fully take into account, for example, the effect that different

distributions and forms of galaxy surface brightness profiles would have on observed counts.
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A fully comprehensivemodelmight, for example,providefor a distribution of surface

brightnessprofilesas a function of galaxyspectralclass. A particular survey'ssurface

brightnessdetectionand measurementthresholdsmight thenbeappropriatelytakeninto

accountwhencomparingmodelpredictionsto observations.

All of thesecaveats withstanding, we nonetheless consider the KGB model the relevant

null hypothesis for explaining our data, believing it to be the most consistent and compre-

hensively calibrated NE model produced to date. As we claim to have firm estimates of the

completeness and photometric accuracy of our results, the consistency (or lack thereof) of

our observations with the model helps provide an additional check on whether mild galaxy

luminosity evolution remains a valid means of explaining the data. Gronwall (priv. comm.)

is currently in the process of re-optimizing the non-evolving LFs of the KGB model in the

context of our data, the results of which shall be forthcoming.

As more DPOSS data, more accurate calibration, and the possibility of predicting

counts and colors in the g passband are achieved in the near future, we believe that one

will be able to place significantly more restrictive constraints on galaxy evolution models

at bright magnitudes. Far more difficult is the remaining task of coming to understand

and model the idiosyncratic systematics of each data set to which one should compare.

In this respect, the PNSC and DPOSS should prove to be far more amenable than many

other sources, due to the good statistics (tens of millions of galaxies), uniform quality,

and well-understood properties of the data. These initial results provide a glimpse of the

scientific potential of the full data set when it becomes available.
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A Appendix - Plate Photometric and Detection Sensitivi-

ties

In order to optimize the plate reduction procedure and understand its sensitivity to various

image characteristics, we created simulated images that matched the digitized plate scans as

accurately as possible. In particular, we wished to study detection efficiency, photometric

accuracy, and photometric consistency as a function of magnitude type, object profile,

isophotal threshold, image seeing, and image noise. While we had a choice of which type

of magnitude to measure (e.g., aperture or isophotal), the other characteristics are simply

observable, but variable. Through careful simulation, our hope was to better understand

the systematic effects in our DPOSS catalogs resulting from known variations in these

image qualities.

A.1 Simulation quality

Our plate image simulations were constructed using the ARTDATA package within IRAF.

The tasks GALLIST and STARLIST were used to construct a list of objects used to

populate a 20482 simulated footprint image. The random object lists were created assuming

a uniform spatial distribution and a power law luminosity function. We attempted to

match the quality and object density of plate J380, as it was as representative a plate from

the survey as any. For galaxies in the g band apparent magnitude range 15_ to 19 _, a

set of 60 galaxies with a power law slope of 0.35 (L 0¢ 10°'35m) was found appropriate,

while 5200 objects with a power law slope of 0.6 (Euclidean) was used for the range 19 TM

to 23 _. The galaxy profiles were all exponential disks with half-power radii uniformly

distributed between +50% and -50% of a canonical size for a given magnitude, specified

by a maximum of 15.0 arcseconds for the brighter sample and 2.90 for the fainter objects.

Each had random inclination, i, ranging uniformly from 0 ° to 90 °, with axial ratios given

by

a/b = _/0.99 sin(i) 2 + 0.01.

An internal absorption coefficient was also applied based on the inclination (see the IRAF

ARTDATA/GALLIST documentation for details). A minimum redshift of 0.02 and 0.126
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wasassignedto the bright endof eachmagnituderange.Within GALLIST, object red-

shifts are assumed to be proportional to the luminosity distance, or the square root of

the apparent luminosity, and are used to compute the mean apparent sizes of the galaxies

according to z/(1 + z) 2, the cosmological redshiff factor for angular diameters.

The random star lists were constructed assuming a uniform spatial distribution and a

power law luminosity function with slope 0.2, which we found to provide the best fit to our

data. A total of 800 stars in the g magnitude range 15.0 m to 22.5 'n were found to match

the measurements of plate J380.

Galaxy bulges and ellipticals were not included in these simulations. As their profiles

fall somewhere in between stars and exponentials, we nonetheless believe these simulations

sample the relevant extremes in the data. The fact that the exponential disks were con-

structed with randomly generated half-power radii also assures that the images sample a

distribution of different surface brightness profiles.

Noiseless images containing stars and galaxies were created using the MKOBJECT

task within ARTDATA. To simulate the effects of seeing, depending on the simulation, we

convolved the image with either a bivariate Gaussian:

r(r) = exp[-In(2)(¼)_],

or Moffat (1969) function:

I(r) = [1 + (2 '//s- 1)(_oo)2] -/s,

where I is object intensity, r is the radial distance from the object center, ro is the half-

intensity radius scale parameter, and 3 is the Moffat parameter, which we take to be 2.5.

As we show below, the choice of point spread function (PSF) form ultimately made very

little difference for our purposes. The half-intensity radius of PSF we applied was 2.7

arcseconds, closely matching the width measured on plate J380.

Next we ran one of our own routines for adding noise to the image. The choice of

an appropriate noise level was complicated by the fact that the noise is correlated from

pixel to pixel in actual plate images. In the subsequent section, we describe how we used
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simulatedimagesto determinehowbestto adjustourdetectionthresholdsto compensate

for this correlation.Wesimulatedthis effectby addingsignaldependentand independent

randomGaussiannoiseto the imagebeforeconvolvingit with a smallblurring kernel.The

latter wasachievedby runningtheIRAF taskGAUSSonthenoisyimageusinga pixelated

Gaussiandistribution of standarddeviation0.51pixelsand sampledout to four standard

deviations.As a final stepwecrudelysimulatedthe effectsof saturationby croppingall

pixelsvaluesto somemaximumlevel.

Afternumerousiterationsof adjustmentsto themanyparametersinvolved,wemanaged

to constructa set of simulatedplate imagesthat match the real data well. Figures12

and 13 demonstratethat the ensembledistribution of object shapesand sizesin J380

and the simulateddataareverycloselymatched.In particular, the scatterof objectsis

quite similar, indicating consistentnoisepropertiesbetweenthe two. A further test of

the correspondencebetweenthe real andsimulateddata,especiallyat the noiselevel, is

depictedin a plot of numbercountsasa functionof magnitude(Figure 14).

.4..2 Effect of correlated pixel noise on detection

Foroptimal sensitivity,the FOCASdetectionalgorithmappliesa thresholdequalto some

numberof estimatedstandarddeviations(sky sigma)abovethe locally estimatedsky.

SKICAT providesFOCASwith a robust valuefor the sky sigma,individually derived

from statistics for eachfootprint. However,becauseof spatially varying pixel-to-pixel

correlationwithin eachplate scan,usingthe samemultipleof sky sigmaasthe threshold

for all footprintswouldnot resultin the samedetectionsensitivity.

To compensatefor this effectandapproacha commonlevelof sensitivitybetweenand

within plates,wesoughtto derivea factorby whichto scalethe measuredsky sigmasoas

to makeit correspondto approximatelyonestandarddeviationin an unblurred version of

each footprint. To establish this scaling factor as a function of measured blur, we used one

of our simulated footprint images matching the average noise 1 and object number statistics

1The appropriate level of uncorrelated, Gaussian random noise was determined in an iterative fashion.
First, we found a Gaussian kernel which, when convolved with the image, produced a degree of blur, as
measured by the pixel-to-pixel correlation, closely approximating that of an average footprint. We then
found that noise amplitude which, after convolution, resulted in a measured sky sigma closely matching
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of realfootprints,thenweconvolvedit with a seriesof Gaussiansof differentwidth. Given

the convolutionkernel,the appropriatescalefactorissimplythe squareroot of the inverse

of the sumof squaresof the normalizedkernelelements.By measuringthe pixel-to-pixel

R2 for eachimage,weareableto empiricallyderivea mappingfrom measured(square)

correlationto scalefactor. We found a sixth order polynomialto providea goodfit to

the relation. We alsoestablishedthe relation usinga blank simulatedsky imageand

derivedvirtually identicalresults,lendingconfidencein the robustnessand accuracyof

our correlationestimationprocedure.

We chose2.5 timesthis scalefactor times the estimatedsky sigmaas our detection

thresholdin plateinstrumentalintensityunits. Wealsorequiredeveryobject to comprise

at leastsixcontiguouspixels.Weusedthebuilt-in FOCASpre-detectionblurringfunction,

which is simply a five by five arrayof linearly increasingweightsfrom eachedgeto the

center.The FOCASdetectionalgorithmworksby convolvingthe imagewith this kernel,

thensearchingfor contiguouspixelswith valuesgreaterthan thelocallyestimatedskyby

thespecifieddetectionthreshold.Toadjustfor theconvolution,which ismeantto improve

the sensitivityof the detectionalgorithm, thedetectionthresholdis scaledby the square

root of the inverseof the sumof squaresof the normalizedkernelelements.Note this is

the sameblurring correctionweappliedearlierto accountfor the correlationinducedby

the scanningprocess.

Our choiceof detectionparameters,in particularour scalingcorrectionfor pixel-to-

pixelcorrelations,resultsin relativelyconsistentsensitivityasafunctionof platequality,as

evidencedbythe relativeuniformityof objectdensitywedetectfromfootprint to footprint

andplateto plate.Our choiceof threshold,minimumarea,andpre-detectionblurring were

chosenafter extensivetestsonboth realandsimulatedimages,establishingsomefeelfor

the trade-offbetweencompletion(percentageof realobjectsdetected)andcontamination

(percentof detectedobjectswhicharenot real). On simulatedimages,this combination

of parametersresultedin an averageFOCASdetectionisophotecorrespondingto roughly

2.0timesthe uncorrelated sky sigma, which is sufficiently far into the noise as to pick up

that of an average footprint.
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everyobjectreadilydetectableby eye.It alsoresultedin whatweconsidereda manageable

numberof detectionsper footprint and plate, in excessof the densitysavedin previous

Schmidtplate surveys.

A.3 Sensitivity to magnitude type and sky subtraction

The next set of testsusingthe simulatedimageswereto determinewhat type of mag-

nitude providesthe most reliableestimateof true star and galaxymagnitudesfor our

data. The four typeswe testedwereaperturemagnitudes,usinga 10arcseconddiame-

ter; isophotalmagnitudes,measuredusingan isophoteapproximately2.0(uncorrelated)

sigmaabovethe local sky;FOCAStotal magnitudes,measuredby growingthe isophote

out until it encompassestwicethe isophotalareausedin thedetectionprocess;and Gaus-

sian'corrected'magnitudesof the sort usedin the APM survey(Maddox,Efstathiou,and

Sutherland1990).Thelatter correspondto total integratedmagnitudesassuminga Gaus-

sianprofile fit to eachgalaxy. Givena measuredthresholdintensity,t, isophotal area, A,

and isophotal magnitude, m, Maddox, Efstathiou, and Sutherland (1990) show that the

difference between total and isophotal magnitudes can be given by a parameter e, where

mtot = m + 2.51ogl0(1 + e) and

At 1

10m/2.g = eln(1 + _). (3)

A quadratic approximation may be applied to invert this expression and solve for e as a

function of A, m, and t. The error introduced by this approximation is negligible. Maddox,

Efstathiou, and Sutherland (1990) use this type of magnitude to attempt to remove the

effect of plate-to-plate variations in their isophotal magnitudes due to varying threshold

isophotes. They justify the use of Gaussian profiles based on the fact that the underlying

true profiles of faint galaxies are blurred by seeing into approximately Gaussian form.

Bright objects, on the other hand, have a small correction factor, so the profile assumption

is not important.

We measured and computed these different types of magnitudes for every galaxy de-

tected in our simulated footprint data. Plots of true minus measured magnitude as a

function of true magnitude and magnitude type appear in Figure 15. As we expect, the
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aperturemagnitudestendnot to measureall of thefluxof brighter,hencegenerallylarger,

galaxies,althoughthey providelessbiasedestimatesat fainterlevels.Theisophotalmag-

nitudesare alsosystematicallybiasedtoo faint, simply due to the useof an isophotal

threshold.FOCAStotal magnitudes,on theotherhand,seemto providea reasonablyun-

biasedestimateof actualmagnitudesasa resultof extendingthe measurementthreshold

in a profile-dependentway. The Gaussiantotal magnitudesderivedfrom correctingthe

isophotalmagnitudes,however,systematicallyovercompensatefor the thresholdingeffect,

resultingin magnitudesseverelybiasedin thedirectionof beingtoo bright.

In Figure 16weplot theaverageandstandarddeviationin onemagnitudebinsof the

differencebetweentrue and measuredmagnitudesfor isophotal,FOCAS,and Gaussian

total magnitudes,measuredfor both starsandgalaxiesin our simulations.Note that by

a trueg magnitude of 20.5 m, the Gaussian total magnitudes of galaxies have the smallest

scatter, but are systematically bright by nearly 0.3 "_. Isophotal magnitudes are biased by

approximately 0.1 '_, but in the opposite direction. For both stars and galaxies, the FOCAS

total magnitudes have the least bias across the fainter and more relevant magnitude ranges.

Hence, we choose to use FOCAS total magnitudes when analyzing the photometry from

DPOSS.

To further test the scientific relevance of the choice of magnitude type, we computed

the differential galaxy counts measured from our simulated data using each of the different

magnitude types. We plot these results in Figure 17. The solid line indicates the true

number of objects used to create the data. Note that using both the isophotal and FOCAS

total magnitudes result in measurements that trace the actual counts fairly well out to a

magnitude of approximately 20.5 m in g. Due to the bias in the Gaussian total magnitudes

we computed, however, those number counts are significantly inflated above truth at faint

levels. A large number of faint objects are artificially shoved to the left, boosting the

counts of objects in the range 19.5 'n < g < 21.0 TM. We are unable to assert that an effect

of just this sort helps account at least in part for the excess counts observed by the APM

group in their survey (Maddox et al. 1990), as we have not attempted to simulate and

explore these effects using their data (which consist, e.g., of photographic densities and
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not fitted intensities).Nonetheless,after performingthesetests,wewereconvincedof the

merit of usingFOCASand not Gaussiantotal magnitudesfor our survey.

In additionto magnitudetype,qualityof skysubtractionisoneof themostdetermining

factorsof accuratephotometry. In this capacity,we found the FOCASsky estimation

routine to performsuperbly. In Figure 18weplot the meanand standarddeviationof

the error in the measuredsky intensityof the simulateddataasa functionof magnitude,

in units of the image's(uncorrelated)sky noisesigma. Note that the meansky error

is well belowa tenth of the sky sigma,and after accountingfor averageobject areas,

resultsin anaveragemagnitudeerrorwell under0.01rndownto a g of 20 m, rising only to

0.02 "_ by g = 22 m. To verify that our simulated data matched the real data well enough

to make this test relevant, we compared the measured sky values in our simulated data

with measurements from plate J380 (Figure 19). Just as in Figures 12 through 14, we

found excellent agreement between the two distributions. Note, however, that we have not

simulated the effects on sky subtraction of crowding of the sort expected at low Galactic

latitudes, where more specialized techniques will be required. Our simulations only verify

that the FOCAS local sky estimation routine performs quite well for images such as those

in high latitude DPOSS fields.

A.4 Sensitivity to detection threshold, seeing, and noise

The primary reason for using something llke a Gaussian corrected magnitude is to help

remove the effect of expected image variations, such as in the surface brightness of mea-

surement thresholds. Ideally, of course, one would like to use the same surface brightness

threshold, in terms of calibrated magnitudes per square arcsecond, when measuring all

plates. This presents the quandary, however, of knowing the photometric calibration of

the plate prior to it ever being reduced. In the end, one must just choose a consistent means

for determining the isophotes, and afterwards try to account for the resulting variations

in the actual levels. We sought to quantify how well FOCAS total magnitudes hold up

to these sorts of varying plate effects, as well as determine the sensitivity of our detection

method to these variations.
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We found that detectionefficiencyand measuredFOCAStotal magnitudesvary in

an expectedmannerasa function of detectionand measurementthreshold,seeing,and

noise.Thesevariationsareat the levelexpecteddueto noiseconsiderations,andthey are

generallynot too significantuntil g > 21.4 'n. These results are illustrated in Figures 20

through 25. These figures demonstrate the effect of varying each factor (threshold, seeing,

and noise) by an amount at the limit of what is expected (or found to date) in the actual

survey. For each factor, we plot the detection efficiency and measured magnitude error

(the offset relative to the truth) for stars and galaxies as a function of that factor (Figures

20, 22, and 24). We also plot the consistency of measured magnitudes from image to image

assuming different levels of that factor (Figures 21, 23, and 25).

Of particular note is the consistency of stellar and galaxy magnitudes as a function of

different isophotal thresholds out to reasonably faint magnitudes. We find that out to a

g magnitude of 20.5 rn, the average offset due to a threshold difference of 0.2 m is less than

0.025 m, which is well within the systematic offset we actually measure from plate to plate.

This means that varying thresholds are not the principal contributor to plate-to-plate

variations in zero points in our data, but rather these variations are more likely due to a

composite of many factors, including seeing, plate sensitivity variations, as well as thresh-

olds. This justifies our choice of using FOCAS total magnitudes as opposed to Gaussian

magnitudes, which are meant to explicitly remove the effects of varying thresholds. We

found that the consistency of Gaussian magnitudes is, in fact, better out to fainter magni-

tudes. However, this consistency is achieved at the cost of significant bias in the measured

magnitudes, as demonstrated in Figure 15. We believe the error we would introduce in

attempting to remove this bias, which is very difficult to measure for real data, would far

exceed the error and inconsistency resulting from using FOCAS total magnitudes, so we

do not attempt it.

Our tests also in(iicate that different levels of seeing have moderate effects on detection

efficiency for both stars and galaxies, though the effects on absolute and relative magnitudes

are much more pronounced for stars than galaxies. Varying the seeing width from 3.0 _t to

3.6" results in a relative stellar magnitude offset of about 0.07 m by g = 20.5 'n, while it is
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lessthat 0.03m for galaxies. Changing the shape of the PSF from a Gaussian to a Moffat

profile of the same width has virtually no effect on the measured galaxy magnitudes, but

has an effect on the order of 0.05" for stellar magnitudes out to a g of 20.25 m.

Different realizations of noise at the same and higher levels have little effect on detection

efficiency and magnitudes out to the plate classification limit. The false detection rate, or

catalog contamination, however, rises dramatically at the faint end with just a 20% increase

in noise level. This observation helped motivate our choice of a noise-dependent, rather

than constant surface brightness, detection and measurement threshold, helping to keep

catalog contamination at a reasonably constant level. Using a constant surface brightness

threshold would require knowledge of a plate's photometric calibration before processing it,

which is rather difficult to achieve. In any case, because of the variability in pixel-to-pixel

noise correlation we measured within plates, we were largely limited for practical reasons

to using the scaled-number-of-sigma-above-sky threshold described in detail in Section A.2

above. Our attempts at using a constant surface brightness threshold resulted in catalogs

of such variable depth and contamination, as a result of varying noise correlation, as to

render them useless. Instead we chose to live with varying threshold isophotes, verifying

through these simulations that the systematic effects on magnitudes are within acceptable

limits.

In summary, systematic galaxy magnitude offsets due to expected variations in thresh-

old isophote, image seeing, and noise appear to be below 0.05 m down to our classified

galaxy 90% completeness limit of _., 20.25 m in g. The effects of these factors on detec-

tion efficiency and catalog contamination qualitatively meet our expectations, and have

virtually no affect on catalogs out to the classification limit. Expected variations in image

seeing and noise do play major roles in determining the plate detection limit, however.

A.5 Object profile sensitivity

We also performed a limited number of tests to determine the sensitivity of FOCAS de-

tection and total magnitudes to galaxy profile. As our simulated images were created

only using exponential disks, we were unable to test the sensitivity to an exhaustive set
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of profiles. The galaxyparameterswe testedagainstwereaxial ratio (a/b) and normal-

izedhalf-light radiusat a givenmagnitude(rnorm),whichvariedfrom -50% to +50%in

our simulations.Figure26indicatesthat therearenosignificantsystematicvariationsas

a function of thesegalaxyshapeparametersout to magnitudesof interest. Differences

in theseparametersdo affect the accuracyof faint magnitudesfor largevaluesof both

quantities,however(seeFigure27). Thesewouldbegalaxieswith relativelyfiat profiles.

This figureplots galaxieswith true magnitudelessthan or equalto 22.0m in g. Out to

our galaxy catalog completeness limit of 20.25 m, the average offset is only about 0.2 m.

Nonetheless, the sensitivity of DPOSS galaxy photometry to variations in object profile is

a subject which should demand careful attention in the future.
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B Appendix- Photometric Calibration

B.1 Instrumental plate-to-plate calibration

The initial step in establishing a uniform magnitude system for all of our survey plates was

to compile a list of all objects detected and classified as a galaxy within pairs of adjoining

plates. We limited the list to objects detected within 2.9 ° of the center of each overlapping

plate, insuring that the photometry would be minimally affected by vignetting effects.

Figure 28 plots the difference in instrumental magnitude as a function of mean magnitude

for the galaxies in the overlap between F380 and F381. When performing the density to

intensity transformation before processing each plate, we attempt to scale the average sky

value of each plate to the same level so that the instrumental magnitudes for each plate

tend to be quite close. They are also scaled to roughly match their calibrated values within

a magnitude or two. Note that for Fin,t > 15.0 m, the difference in magnitudes between

plates appears to consist almost exclusively of a DC offset term, with no higher polynomial

terms obviously necessary to express the relation. The same holds true for the other plate

overlaps measured in this study, including J band overlaps, as will be quantified below.

The simple, zero order nature of this relation implies that for unsaturated galaxies, our

method of linearizing the plate densities is consistent from plate to plate, and our choice of

isophote and magnitude type are consistent from plate to plate. It also demonstrates the

relatively high photometric uniformity within the plates resulting nitrogen flushing during

each exposure.

A simple test to verify the adequacy of a simple zeroth order offset between plates is

to measure their consistency for a mutually overlapping ring of three or more plates. In

our survey, three such fields (380,381, and 442) were available for both F and J. To obtain

a statistically meaningful number of objects in the 380/442 overlap, we had to relax the

radial distance restriction to 3.1 ° . Otherwise, the lists of overlap objects were generated

exactly as described above.

For each band, we measured the average magnitude offset between each of the three

catalog pairs. We restricted the estimate to within the mean magnitude range of 16 rn to 19m
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for F_,,t and 16" to 20m for J_,_t. We then solved for the least-squares best fit zero point

offsets between field 380, our chosen standard, and fields 381 and 442. We used the three

pairwise estimated offsets as our measurements and the three plate closure requirement

as a constraint. The original pairwise offsets and those obtained after subtracting our

least-squares fits appear in Table 4. The mean offset between fitted pairs in the magnitude

ranges quoted above is less than 0.01 'n in both colors, with a standard error of 0.018 m in

F_,_,t and 0.036 "_ in J_,_,t.

Given the high degree of consistency resulting from this matching procedure, we applied

these fitted offsets, transforming all magnitudes to the field 380 instrumental standard. For

field 382, which does not overlap 380, we simply offset relative to the fitted field 381.

B.2 Absolute calibration using CCD data

In our final stage of calibration, we combined matching CCD and plate measurements from

all four plates in order to establish the plate-to-CCD photometric calibration curves. We

did so by fitting zero, first, and third order polynomials to the lists of J and F magnitudes

(in the instrumental field 380 system) vs. calibrated Gunn g and r magnitudes, respectively.

Once again, we restricted the lists to objects with a maximum distance from a plate center

of 2.9 ° . The fitted data points and their residuals after applying the linear calibration

transformation appear in Figures 29 through 32. The calibration accuracy on a per plate

basis is also reflected in Table 5, while the averages across all plates appear in Table 6.

Our empirical estimates of the uncertainties in the linear transformation offsets, based

on independent calibrations of each plate, are approximately 0.025 'n in r and 0.05 TM in g,

though the formal uncertainties are about a factor of two smaller. The empirically-derived

uncertainty in the slope of the transformations is approximately 0.015 for both g and r,

dominating the calibration uncertainty in net effect after adjusting the offset to achieve an

optimal fit using the different slope. We explicitly test for the effect of this uncertainty on

our measured counts in section3.2.

Our choice of a linear plate-to-CCD magnitude transformation was largely driven by

our presumption that most nonlinearities in the faint magnitude ranges of interest should
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havebeentakeninto accountby our fit to the HD curve,asdescribedin Section1. We

suspectedthat any attempt to accountfor additionalnonlinearitymight involve fitting

into the noise. This suspicionwaslargelyconfirmedby plots of stellar color-magnitude

diagramsasa functionof whichtransformationweapplied(seeFigure33). Notethat the

two distinctivestellar ridgesdisplaya high degreeof nonlinearitywhenone appliesthe

cubic transformation. As this result is in contradictionwith the expecteddistributions

within color-magnitudediagramsfor galaxies,wechoseto removethe cubic polynomial

from consideration.Instead,wechoseto apply the linear transformationfor both g and

r, as it resulted in a marginally better fit than the zero point offset and still a reasonable

stellar color-magnitude diagram.

As our error analysis in Tables 5 and 6 reveals, after the initial zero point adjustment

is applied to each plate, a single transformation function converting instrumental to cal-

ibrated magnitudes applies consistently well across multiple plates, with standard zero

point errors relative to CCD photometry of less than 0.05 magnitudes in r and 0.10 in g.

We note, however, that this calibration process is only valid for the portion of each plate

not significantly affected by vignetting. DeCarvalho (1994, priv. comm.) is in the process

of mapping out the POSS-II vignetting function using a large sample of DPOSS scans,

which should allow us to extend the area of each plate suitable for photometry.
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Figure 1: The initial set of DPOSSsurveyfields,analyzedin this paper. The dashed
linescenteredoneachfieldoutlinethe portionof theplate not sufferingsignificantlyfrom
vignettingeffects.The small labelswithin eachfield prefacedby an 'A' or 'F' designate
the locationof CCDsequencescentereduponAbell clustersor randomfields,respectively.
The North GalacticPoleis indicatedby a largedot in the lowermiddleof the plot.

Figure 2: The parametricform in Equation1 is usedto approximatethe transforma-
tion function from the measureddensitiesof the 16plate sensitometryspotsto relative
intensities.

Figure3: The accuracy of our star/galaxy separation technique is depicted by the complete-

ness (fraction of galaxies classified as such) and contamination (fraction of non-galaxies

classified as galaxies) measured within galaxy catalogs from four survey plates, using in-

dependent CCD sequences as the source of true classifications.

Figure 4: The relative transmission of the IIIa-J, IIIa-F, and IV-N plate plus filter com-

binations and the Gunn-Thuan g, r, and i system. The filter tracings were provided by S.

Djorgovski and J. Smith (priv. comm.).

Figure 5: The difference in calibrated r magnitude vs. average magnitude for galaxies in

the overlaps between four plate fields.
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Figure6: The differencein calibrated g magnitude vs. average magnitude for galaxies in

the overlaps between four plate fields.

Figure 7: r and g band galaxy counts in our four fields. The sharp fall-offs at the faint

end are due to truncation of the catalog, by construction, beyond the reliable classification

limit, rather than the intrinsic plate detection limit.

Figure 8: Galaxy counts as a function of the plate-to-CCD transformation function. The

thick solid line in each graph reflects the differential number counts resulting from our stan-

dard linear calibration of the plate magnitudes to the Gunn-Thuan standard. The dotted

lines surrounding them reflect the counts derived by altering the slope of the transformation

by one standard deviation. The dashed and dashed-dotted lines are the counts resulting

from the application of best-fitting zero th and third order transformations, respectively.

Figure 9: The measured differential number counts from this survey (solid line, with

dots extending beyond the 90% completeness / 10% contamination limit), Picard's (1991)

survey of POSS-II plates in the North and South Galactic Caps, and Sebok's (1986) survey

of earlier-generation Palomar Schmidt plates. The other lines are the predictions of no

evolution models by Koo, Gronwall, and Bruzual (KGB 1993a) and Guiderdoni and Rocca-

Volmerange (GRV 1990), and the mild evolution model of Koo, Gronwall, and Bruzual

(KGB 19935).

Figure 10: The measured differential number counts from this survey (solid to dotted

line) and the APM (Maddox et al. 1990) southern survey of SERC/ESO plates. The

other lines are the predictions of no evolution models by KGB, GRV, and Ellis (1987),

and the mild evolution model of Koo, Gronwall, and Bruzual (1993b). The upper panel

reflects a conversion of the Bj magnitudes of all the non-DPOSS counts to g using the

transformation in equation 2 from Windhorst et al. (1991) assuming a mean (g - r) of

0.3 m, as measured in our data. The lower panel is the result of horizontally shifting all

non-DPOSS counts until the DPOSS and APM counts are normalized at g = 17.0 _.

Figure 11: The distribution of galaxy colors in three magnitude intervals in g. The his-

tograms are from the four DPOSS fields in our survey. The solid line is the no evolution

model prediction of KGB. The color transformation from the model's (Bj - RF) to the

data's (g - r) system, which is approximate and may be off by as much as 0.3 m, is derived

from matching star color distributions in the two photometric systems.
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Figure12:A comparisonof measuredobjectareasasafunctionof FOCAStotal magnitude
for our simulatedplateimagevs. a sectionof the scannedplateJ380.

Figure 13: A comparisonof measuredobject intensity weightedfirst momentradii as a
function of FOCAStotal magnitudefor our simulatedplate imagevs. a sectionof the
scannedplateJ380.

Figure14:A comparisonof thenumberof objectsdetectedin eachof ninemagnitudebins
for our simulatedplateimagevs. two differentsectionsof the scannedplate J380. One
sectionwastakenfrom the centerof the plate,the other from the top.

Figure 15: The true minusmeasuredmagnitudeasa function of true g magnitude as a

function of true magnitude and measured magnitude type. The solid lines connect average

values in one magnitude bins.

Figure 16: The average and standard deviation in one magnitude bins of the difference

between the true and measured magnitudes as a function of magnitude type.

Figure 17: Differential galaxy counts measured from our simulated data using three dif-

ferent magnitude types. The solid line indicates the actual number of objects used to
construct the data.

Figure 18: The sky measurement error, and standard deviation thereof, of the simulated

plate data as a function of FOCAS total magnitude in units of the image's sky pixel-to-

pixel sigma prior to pixel blurring. The resulting magnitude errors are negligible (< 0.01 'n)
below g = 20 m.
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Figure19:A comparisonof measuredskyvalues(in arbitrary intensityunits)asafunction
of FOCAStotal magnitudefor oursimulatedplateimagevs. a sectionof thescannedplate
J380.

Figure20: Theeffectof varyingthe isophotalthresholdon detectionefficiencyand mag-
nitudeaccuracy.

Figure21: The averagemagnitudeoffsetfor starsand galaxiesmeasuredusing different

isophotal thresholds.

Figure 22: The effect of varying the seeing shape and width on detection efficiency and

magnitude accuracy.

Figure 23: The average magnitude offset for stars and galaxies measured on images with

varying seeing shapes and widths.

Figure 24: The effect of using the same image but different noise realizations, one of the

same level, another 20% higher, on detection efficiency and magnitude accuracy.

Figure 25: The average magnitude offset for stars and galaxies measured on images with
different noise.

Figure 26: Detection efficiency as a function of galaxy shape as measured by the normalized

half-light radius, rnorm, and axial ratio, a/b.

Figure 27: The accuracy of measured magnitudes as a function of the same galaxy shape

parameters as in Figure 26 out to a true magnitude of 22.0 'n.

Figure 28: The difference in instrumental F magnitude as a function of mean magnitude

for the galaxies in the overlap between F380 and F381. The dashed line at a difference

of 0.276 m indicates the offset we obtain from a simultaneous least squares optimization of

the offsets between F380, F381, and F442 in the magnitude range 15 m < Finot < 19 m.
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Figure29: We fit zero, first, and third order polynomials to measured plate and CCD red

magnitudes from a combined llst of objects in the four indicated plate fields. We chose the

linear calibration for its theoretical appeal and because it produced the most reasonable
stellar color-magnitude diagrams.

Figure 30: We fit zero, first, and third order polynomials to measured plate and CCD blue

magnitudes from a combined list of objects in the four indicated plate fields. As for r, we
chose to use the linear calibration.

Figure 31: The differences between measured plate and CCD magnitudes of galaxies after
calibrating the instrumental plate magnitudes to the r system.

Figure 32: The differences between measured plate and CCD magnitudes of galaxies after

calibrating the instrumental plate magnitudes to the g system.

Figure 33: The gj - rF color of stars vs. rF magnitude in Field 380 for three different

methods of plate to CCD magnitude calibration. Note that the two stellar ridges take

their expected linear form only in the case of zeroth and first order (offset and linear,
respectively) transformations.
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Field Plate RA(1950)
J380 1744 12h24 m

F380 3847 12h24 m

J381 3116 12h48 _

F381 2353 12h48 _

J382 1790 13h12 _

F382 2268 13h12 m

Dec Dens Exp (mins) Trans Grade mmn

35 ° 1.48 80 Hazy A 21.81
35° 1.51 I00 Cloud B 21.39

35° 1.56 60 Clear B 21.81

35 ° 1.22 90 Clear B 21.12

35 ° 1.13 65 Clear A 21.81

35 ° 1.28 90 Clear A 21.39

J442 3131 12_39 m 30 ° 1.87 75 Clear A 21.81

F442 3068 12h39 _ 30 ° 1.28 75 Cloud B 21.12

Table 1: Plate number, center location, approximate photographic sky density, exposure

time, sky transmission quality, grade, and approximate limiting magnitude of the survey

plates in our four field region.
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15.0 < r <: 19.0

Plates mo/Det

380/381 0.031

380/442 -0.009

381/382 -0.056

381/442 0.022

frO//set

0.172

0.166

0.173

0.324

15.0 < r < 20.0 14.5 < g < 19.5 14.5 < g < 20.5

]_O/fset frO//set 11 _O/fset frO//set _O/$set frO//set

0.019 0.241 0.035 0.373 0.024 0.345

-0.015 0.225 -0.055 0.201 -0.032 0.327

-0.001 0.256 0.004 0.160 0.002 0.252

0.008 0.306 0.046 0.534 0.026 0.412

Table 2: Average offsets and standard deviations between calibrated g and r magnitudes
within four plate overlap regions in two magnitude ranges.



Magnitude toOl/set -mOllset trOY/set

range mean sigma mean
15.0 < r < 19.0 -0.003 0.039 0.209

15.0 < r < 20.0 0.003 0.014 0.257

14.5 < g < 19.5 0.008 0.045 0.317

14.5 < g < 20.5 0.005 0.027 0.334

Table 3: Average offsets and standard deviations between calibrated g and r plate magni-

tudes across four field overlaps in two magnitude ranges. The offset means and sigmas are

computed using the overlap _ measurements listed in Table 2. The mean aottsa values
are derived from the a measurements from the same table.



Plates

380- 381

380- 442

380- 381

F inst

Original Fitted

0.289 ± 0.227 0.019 ± 0.208

0.131 ± 0.201 -0.012 ± 0.197

-0.119 ± 0.283 0.009 ± 0.280

Jinst

Plates Original Fitted
380- 381 0.198 ± 0.342 0.021 ± 0.342

380- 442 -0.039 ± 0.311 -0.026 ± 0.311

380- 381 0.160 ± 0.406 0.024 ± 0.407

Table 4: The mean and standard deviation of the measured difference in instrumental

magnitudes of galaxies in the indicated plate overlaps, before and after applying fitted

plate offsets. The measurements were obtained over the magnitude range 15" < Fi,,,tr
< 19 '_ and 16m < Jinst < 20 m.
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15.0 < r < 19.0

Plate ?I'ioIfset
380 0.039

381 -0.034

382 0.027

442 -0.021

15.0 < r < 20.0

aou,et _Ol/,et aoffs_t
0.237 0.049 0.218

0.159 0.018 0.196

0.129 0.034 0.168

0.195 -0.042 0.230

14.5 < g < 19.5 14.5 < g < 20.5

[Imolfs_t _offs_t mof/_ _of/_et
0.008 0.192 -0.043 0.273

0.042 0.194 0.022 0.223

0.084 0.336 0.071 0.286

-0.106 0.320 -0.144 0.385

Table 5: Average offsets and standard deviations between calibrated plate magnitudes

and corresponding CCD magnitudes in g and r for fields 380, 381, 382, and 442 in two

magnitude ranges.
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Magnitude no//set -_Offset O'Ol/set

range mean sigma mean

15.0 < r < 19.0 0.003 0.036 0.180

15.0 < r < 20.0 0.015 0.040 0.203

14.5 < g < 19.5 0.007 0.081 0.261

14.5 < g < 20.5 -0.024 0.093 0.292

Table 6: Average offsets and standard deviations between calibrated plate magnitudes and

corresponding CCD magnitudes in g and r across four fields in two magnitude ranges. The

offset means and sigmas are computed using the plate by plate _ measurements listed in

Table 5. The mean aoyysa values are derived from the (r measurements from the same
table.
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